Inteligencia Artificial aplicada a las empresas PYMES

  • Tecnología
  • 34 minutos de lectura
INTELIGENCIA ARTIFICIAL PARA PYMES
(1/3)
Istalaió y deate sore Iteligeia
Artifiial apliada a las epresas P.Y.M.E.“.
Enfoquemos los proyectos al mejoramiento de la
Productividad para aumentar nuestra participación
en los negocios
Los epesaios ue tega ue defii ua ivesió deeá
decidir entre: invertir en una máquina de producción o invertir en
programas de inteligencia artificial que les asegure el ingreso a la
Cuarta Revolución Industrial, la nueva era de los negoios.
1. A qué se denomina Inteligencia Artificial.
Propongo que definamos conceptos para saber de qué hablamos cuando decimos
inteligencia e Inteligencia Artificial
La Real Academia Española defina:
INTELIGENCIA:
1. f. Capacidad de entender o comprender.
2. f. Capacidad de resolver problemas.
3. f. Conocimiento, comprensión, acto de entender.
INTELIGENCIA ARTIFICIAL:
1.f. Inform. Disciplina científica que se ocupa de crear programas informáticos que
ejecutan operaciones comparables a las que realiza la mente humana, como el
aprendizaje o el razonamiento lógico.
Con estas consideraciones a la vista podemos suponer que, una simple calculadora
manual que resuelva las operaciones matemáticas elementales, cumple con las
condiciones descriptas.
La respuesta es
Por ejemplo multiplicar 128 x 2 =
La calculadora realiza un procedimiento denominado Algoritmo Genético que
vamos a ver más adelante.
Resuelve primero la unidad 2 x 8 = 16 16
Después resuelve la decena 2 x 2 = 4 y la suma a la decena del resultado anterior
4 + 1 = 5 56
Y por último resuelve la centena 2 x 1= 2 y la suma al resultado ya obtenido en el
lugar correspondiente de la centena 2 + 0 = 2 256 resultado final
Y así, cumpliendo con este algoritmo cargado en el programa, resuelve todas las
operaciones de multiplicación que se le presenten.
Esta simple calculadora entendió el problema que se le planteaba, lo resolvió y
finalmente expuso la respuesta esperada 128 x 2 = 256
Muy simple ¿verdad? Pero nos ayuda para entender de qué hablamos, desde este
simple ejemplo hasta un Chatbot, por ejemplo, que entiende lo que se le propone
verbalmente y responde coherentemente la consulta que se le plantea, también
con un algoritmo incorporado en la máquina. El abanico de aplicaciones es muy
amplio y vamos a ver más adelante todo lo que abarcan estas nuevas
herramientas.
Más allá que le presentemos un problema, lo entienda y lo responde en una
pantalla, también el resultado puede ser una orden que se le asigna a un Robot.
Y aquí aparece un nuevo término que no habíamos descripto y que, también la
Real Academia Española define como:
Robot:
1. m. quina o dispositivo mecánico/electnico programable, capaz de
manipular objetos y
realizar operaciones antes reservadas solo a las personas.
2. m. Inform. Programa que explora autoticamente la red para encontrar
información.
Los Robots operan con sencillos programas de algoritmos mecánicos y también
pueden contemplar aportes de I.A., ejemplos:
1-En una línea de montaje terminal automotriz se encuentran Robots que operan
cuando un fin de carrera les indica que una parte del auto llega a un punto
determinado y opera una soldadura programada mecánicamente y, cada vez que
el fin de carrera le anuncia que llegó una nueva parte, realiza la soldadura y la
pieza sigue viaje.
2-En la misma línea hay otro robot que coloca una puerta en la carrocería y
después de ubicarla controla que la luz en su entorno sea la que corresponda
utilizando el programa VISION PRO que puede leer los espacios entre puerta y
carrocería en todo su contorno y si no son los que corresponden acomoda la
puerta para colocarla en el lugar que deba ubicarse.
Conclusión: definimos de qué hablamos cuando mencionamos INTELIGENCIA,
cuando mencionamos INTELIGENCIA ARTIFICIAL y que significan los ROBOTS en la
gestión empresarial.
2. Circunstancia y fecha en que se consideró la I.A. como
ciencia independiente.
Desde los orígenes de la vida en el planeta los humanos realizaron los trabajos y
resolvieron sus necesidades con el esfuerzo de sus manos, sus brazos y piernas,
con esfuerzo físico.
Con el avance de los acontecimientos, la imaginación y creatividad idearon
herramientas que ayudaron al hombre a realizar sus tareas.
Más adelante diseñaron y fabricaron máquinas a las que el hombre ayudó a
realizar los trabajos, sin necesidad de esforzarse ni realizar tareas agotadoras.
Estas etapas aliviaron a las personas del cansancio y agotamiento por el esfuerzo y
la repetición de movimientos, actuando siempre sobre el cuerpo y las actividades
físicas. Pero paulatinamente, durante todo este período, se intentó resolveré,
también, el trabajo mental.
Aunque parezca increíble existen rastros que indican que en las antiguas
civilizaciones (griegos, chinos y mayas) ya se preocupaban por incorporar alguna
inteligencia a ciertas máquinas (1384 AC)
En 1849 George Booler logra establecer principios de la Lógica Proporcional.
En 1874 Frege inventa el sistema de razonamiento mecánico al que denomina
escritura de conceptos
En 1950 Alan Turing escribe el primer artículo moderno que encara el análisis de la
posibilidad de mecanizar la inteligencia.
En 1956 John Mc.Carthi y Claude Shannon introducen el término Inteligencia
Artificial en la comunidad técnica y científica.
Herbert Simon, Allen Newell y Marvin Minsky formalizan las ideas básicas sobre
I.A. y desarrollan la temática de área de especialidad en 1980.
Sin embargo en 1984 E.Dison fue el primero en manifestarse en contra de esta
tendencia haciendo que muchos pensaran que la I.A. había muerto.
No obstante los estudios y aplicaciones de la I.A. continuaron avanzando y se
consideró el año 1956 como el nacimiento de la Cuanta Revolución Industrial al
separar el tratamiento de la I.A. como ciencia independiente de la Informática.
En 1997 IBM carga el programa Deep Blue a una computado y propone un
enfrentamiento con el campeón mundial vigente de ajedrez Gary Kasparov.
El resultado del enfrentamiento dio como ganadora a Deep Blue por 3 ½ a 2 ½
entusiasmando a los científicos y desatando una carrera de investigadores y
desarrolladores de programas de I.A. que resultó en cantidad de aplicaciones útiles
para las empresas y la vida en general.
Esta fue la mejor respuesta sobre la posibilidad de vida de la I.A.
INTELIGENCIA ARTIFICIAL PARA PYMES
(2/3)
+ PRODUCTIVIDAD + EFICIENCIA
Enfoquemos los proyectos al mejoramiento de la
Productividad para aumentar nuestra participación con
más eficiencia en los negocios
Los epesaios ue tega ue defii una inversión deberán
decidir entre: invertir en una máquina de producción o invertir en
programas de inteligencia artificial que les asegure el ingreso a la
Cuarta Revolución Industrial, la ueva ea de los egoios.
3 - Los ejes de estudio sobre los que se trabajó.
DEFINICIONES DE INTELIGENCIA ARTIFICIAL
Rih & Kight [14], “tuat [16], defie e foa geeal la I.A. oola
capacidad que tienen las máquinas para realizar tareas que en el momento son
ealizadas po sees huaos; otros autores como Nebendah [1988], Delgado
[1], aoja defiiioes ás opletas y las defie oo el campo de
estudio que se enfoca en la explicación y emulación de la conducta inteligente
en función de proceso computacionales basadas en la experiencia y
el conocimiento continuo del aiete.
Dicho en otras palabras, es la capacidad de comprender los problemas y
situaciones que se le plantean, realizar análisis de situación emulando la mente
humana, memorizar y proponer u ordenar acciones orientadas a resolver las
etapas en consideración.
Básicamente lo que se pretende de la inteligencia artificial es crear una maquina o
un programa secuencial que repita indefinidamente un conjunto de instrucciones
generadas por un ser humano o por la misma máquina/programa.
LAS INVESTIGACIONES Y DESARROLLOS SOBRE I.A.
SE DESLIZARON SOBRE TRES EJES
REDES NEURONALES
SISTEMAS DE LÓGICA DIFUSA
ALGORÍTMOS GENÉTICOS
REDES NEURONALES
Recordemos que el cerebro humano se compone de billones de neuronas
interconectadas entre sí formando circuitos o redes que desarrollan funciones específicas.
Una neurona típica recoge señales procedentes de otras neuronas o diferentes ingresos a
través de unas estructuras llamadas dendritas.
La neurona emite impulsos de actividad eléctrica a lo largo de una fina y delgada capa de
conectores denominados axones. Las extremidades de estas ramificaciones llegan hasta
las dendritas de otras neuronas y establecen conexiones llamada sinapsis, que transforma
el impulso eléctrico en un mensaje neuroquímico mediante liberación de unas sustancias
llamadas neurotransmisor que excitan o inhiben, a otras neuronas.
De esta manera la información se transmite de unas neuronas a otras y va siendo
procesada a través de las conexiones sinápticas concluyendo en una información de salida
que genera las acciones esperadas
Las redes neuronales tienen como estructura varias capas:
Primera capa como buffer de entrada, almacenando la información bruta suministrada en
la red ó realizando un sencillo preproceso de la misma, la llamamos capa de entrada.
Otra capa actúa como interfaz o buffer de salida que almacena la respuesta de la red para
que pueda ser leída, la llamamos capa de salida.
Y las capas intermedias, principales encargadas de extraer, procesar y memorizar la
información, las denominan capa oculta.
Sistemas de lógica difusa
Los sistemas de lógica difusa también llamada lógica borrosa es la segunda herramienta
que permite emular el razonamiento humano. Este tipo de lógica toma dos
valores aleatorios, pero contextualizados y referidos entre sí. Así, por ejemplo, una
persona que mida dos metros es claramente una persona alta, si previamente se ha
tomado el valor de persona baja y se ha establecido en un metro. Ambos valores están
contextualizados a personas y referidos a una medida métrica lineal.
Los seres humanos pensamos y razonamos por medio de palabras y en grados entre dos
estados, por ejemplo blanco y negro, frío y caliente, etc. Estos sistemas de lógica difusa se
diferencian de los sistemas expertos tradicionales que interpretan valores concretos y
absolutos. Los sistemas de lógica difusa permiten utilizar el lenguaje humano tal como
nosotros razonamos y nos expresamos.
Los sistemas expertos son de aplicación informática que adopta decisiones o resuelve
problemas de un determinado campo, como los sistemas de producción, las finanzas o
medicina, utilizando los conocimientos y las reglas analíticas definidas por los expertos en
dicho campo. Los expertos solucionan los problemas utilizando una combinación de
conocimientos basados en hechos y datos concretos y en su capacidad de razonamiento
Algoritmos Genéticos
Tanto en matemática como en ciencias de la comunicación y disciplinas relacionadas, un
algoritmo es una secuencia bien definida, ordenada y finita de operaciones que permiten
hallar la solución a un determinado problema.
Partiendo de un estado inicial (entrada) y a través de pasos sucesivos se puede llegar a
resultados finales exitosos. Su importancia radica en mostrar la forma de llevar a cabo el
proceso con el fin de resolver problemas matemáticos o de otro tipo.
Un algoritmo para ser considerado como tal, debe ser una secuencia ordenada, finita y
definida de instrucciones.
Así de este modo es posible seguir y predecir el comportamiento de un algoritmo en
particular desde una entrada posible y, a partir de ahí, siguiendo las secuencias de
instrucciones ordenadas y definidas sin dar lugar a ambigüedades, por lo que solo puede
seguirse el camino pautado del principio al fin.
Si hacemos una analogía con los algoritmos genéticos darwinianos asimilados al U.C.C.M
(unidad cerebro, cuerpo, mente) encontramos: algoritmos cortos, menos precisos y de
menor consumo de energía y algoritmos largos, más precisos y con mayor consumo de
energía.
Los algoritmos de camino corto, complejo CR+CM (camino reptiliano + camino mamífero)
solo utiliza el 5% de la información entrante para comenzar a actuar.
Los algoritmos de camino largo, complejo CR+CM+LPF (low pass filter) utilizan el 100% de
la información entrante, son más lentos pero sustancialmente más precisos.
En nuestra vida cotidiana fuimos incorporando algoritmos de diversos tipos y funciones,
desde el algoritmo que nos permite ejecutar una multiplicación entre dos números,
ejecutar música, conducir un vehículo, etc.
OPORTUNIDAD
COMERCIAL
PRODUCTO
DE CARTERA
NECESITA
COTIZACION
SE INCORPORA
A CARTERA
COTIZA AL
CLIENTE
ACEPTADA
COMUNICACIÓN
AL PERSONAL
HAY
EXISTENCIA
OPERACIÓN
PUNTUAL
DEFINE
DISTRIBUCION
SE DESESTIMA
RESUELVE
EMISION DE
NOTA DE VENTA
REMITO Y
FACTURA
REQUERIMIENTO
Y ORDEN DE
COMPRA PROV.
RECIBE DOC.
DESPACHOS Y
RECEPCIONES
INGRESA
A
SISTEMA
AUTORIZACION
CREDITOS Y
COBRANZAS
CONTROLA
EXISTENCIAS,
MOVIM. DE
STOCK Y
DEVOLUCIONES
RECIBE COPIA
ORDEN DE
COMPRA
RECIBE
PRODUCTOS Y
DOCUMENTACION
CONTROLA Y
COMPARA O.C.
ARMADO
DEL
PEDIDO Y
DESPACHO
DOCUMENTACION
DE ENTREGA A
CLIENTE
DISPONE Y
ALMACENA
PRODUCTOS
ATENCION A
CLIENTES
HAY
EXISTENCIA
FACTURA
COBRA Y
ENTREGA
SOLICITA A
DEPOSITO
CENTRAL
DOCUMENTACION
DE VENTAS, CAJA Y
VALORES
RECIBE
REQUERIMIENTO
REQUIERE
INSUMOS O
MATERIALES
FABRICA Y
ENTREGA A
QUIEN
CORRESPONDE
SISTEMA DE ALGORITMO GENÉTICO
NEURONAS
El algoritmo nos da la resolución genérica a un problema y lo podemos emplear todas las
veces que se nos presenta ese problema, por ejemplo, el algoritmo de la división podemos
emplearlo cualquiera sean los números con los que tengamos que operar. No necesitamos
entender cómo funciona ese algoritmo porque sigue las instrucciones preestablecidas y
codificadas inicialmente.
4 - Test que definen los programas de I.A.
Ua oputadoa puede se llaada "iteligete" si loga egaña a ua pesoa
haciéndole ee ue es u huao Esta fase la pouió el ateátio iglés Ala
Turing quien fue llamado el padre de la Inteligencia Artificial.
Ante el avance de las investigaciones y desarrollos de los programas informáticos (1950),
Alan Turing se ocupó de diseñar un test que definiera que comportamiento tenía que
tener una computadora para considerar que se desempeñaba con Inteligencia Artificial.
El Test de Turing nace como un método para determinar si una máquina puede pensar. Su
desarrollo se basa en el juego de imitación.
La propuesta contaba con la participación de tres personas: un hombre, una mujer y un
interrogador que se comunica con ellos solo escribiendo en un lenguaje entendible para
los tres y no ve ni es visto por los otros dos participantes.
La experiencia consiste en que el interrogador debía descubrir quien era la mujer y quien
el hombre, mientras que los interrogados trataban de convencer al interrogador que
ambos eran mujeres.
El siguiente paso consistía en reemplazar a uno de los dos participantes anónimos por una
computadora cargada con un programa de I.A. y, el interrogador no debía advertir la
presencia de la máquina, suponiendo que continuaba comunicándose con dos humanos.
También se implementaron otras variantes reemplazando el hombre o la mujer en
diferentes pruebas, pero el objetivo de esta experiencia consistía en definir que la
máquina funcionaba con I.A. cuando el interrogador no lograba reconocer quien era
mujer, quien era hombre o quién era máquina.
Inmediatamente aparecieron críticas al T.T. con diferentes razonamientos pero,
fundamentalmente, llegaban desde quienes no podían aceptar la idea de que una
máquina se comportase como una persona al punto de poder engañar a un interrogador
humano.
Ua de las ojeioes oteplaa la falta de oieia de la áuia, tato de sí
mismo como de los demás y generar sentimientos positivos o negativos sobre la
información que contiene o las acciones que realiza.
A este comportamiento se lo denomina Solipsismo que indica que la única manera de
saber si una máquina piensa es ser esa misma máquina. El problema es que, la única
manera de saber si otro humano piensa es ser ese otro humano, lo que se conoce como el
problema de las otras mentes.
Posteriormente se perfeccionó el T.T. transformándolo en el Test de Turing Total T.T.T. y
más tarde se incorporaron nuevos test de evaluación.
Augusta Ada Byron King nació un 18 de diciembre de 1815 en Inglaterra y en 1838 se
convirtió en Condesa de Lovelace.
En 1833, tan solo a sus 17 años fue presentada a Charles Babbage, matemático y científico
inglés quien tuvo la primera idea de concepción de un ordenador, ya que la Máquina
Analítica que construyó funcionaba con los mismos principios de los ordenadores
actuales.
En 1843 Lady Lovelace describió y analizó la Máquina Analítica incluyendo las
demostraciones de cómo calcular funciones trigonométricas con variables, y el primer
programa con instrucciones que hizo funcionar la máquina de cálculo y se la reconoce
como la primera programadora de la historia.
En honor a Ada Lovelace y su prestigioso aporte a la informática, se denominó Lovelace
2.0 al test que para aceptar que una máquina funciona con Inteligencia Artificial propone
verificar si la máquina en cuestión es capaz de escribir una historia de ficción, crear un
poema o elaborar una pintura.
Por el momento ninguna máquina ha sido capaz de superar el test de Lovelace 2.0
www.progresa-pga.com.ar
Eduardo Bronzino
pgas@pgas.com.ar
INTELIGENCIA ARTIFICIAL PARA PYMES
(3/3)
HABLEMOS DE LA APLICACIÓN PRÁCTICA EN
NUESTRAS EMPRESAS Y NUESTROS NEGOCIOS
Los epesaios ue tega ue defii ua ivesió deeá
decidir entre: invertir en una máquina de producción o invertir en
programas de inteligencia artificial que les asegure el ingreso a la
Cuarta Revolución Industrial, la ueva ea de los egoios.
5 La Inteligencia Artificial Cognitiva
El avance del desarrollo de la I.A. transitó por la etapa Analítica, Predictiva y Cognitiva.
La Inteligencia Cognitiva se nutre, en gran medida, de los Algoritmos Bioinspirados que
son los que se desprenden del estudio del comportamiento biológico de los seres vivos
que evolucionaron durante los millones de años de existencia.
La inteligencia Artificial Cognitiva (IAC), también llamada Computación Cognitiva, es una
rama específica surgida de la Inteligencia Artificial (IA), capaz de entender y emular el
funcionamiento de la mente humana.
Recordemos que los desarrollos de programas de I.A. se ocupan de imitar los Algoritmos
Genéticos que permiten que los ordenadores corran programas que se comporten
sustituyendo los procedimientos que realizan los seres humanos.
Durante muchos años, los científicos centraron los esfuerzos en tratar de resumir el
cerebro humano en un conjunto de Algoritmos. Sin embargo, ciertas teorías más
modernas, que han revolucionado el estado de la técnica, comenzaron a considerar
importante incluir lo que se conoce como Sistemas Bioinspirados, es decir, máquinas y
algoritmos capaces de resolver los problemas y percibir el entorno tal y como lo hace el
sistema cognitivo de una persona.
Lo cognitivo es aquello que pertenece o está relacionado al conocimiento, es el cúmulo de
información que se dispone gracias a un proceso de aprendizaje.
El desarrollo de la I.C. resulta de la voluntad de las personas por entender la realidad,
incorporarla y relacionarla con la información memorizada en el cerebro y producir
opiniones y acciones consecuentes.
Las máquinas no dejan de alimentarse vorazmente de más y más datos a su paso.
La cognición es la facultad de los seres vivos de procesar información a partir de la
percepción, el conocimiento y las características subjetivas. Cuando se le hace una
pregunta a una máquina genera una hipótesis, genera una respuesta y un nivel de
fiabilidad; después muestra los pasos que le han llevado a dar esa respuesta. En otras
palabras está razonando y aprendiendo a través de la interacción. En cada experiencia se
vuelve más rápida y más inteligente.
Las supercomputadora entienden el lenguaje natural, es decir, la forma en la que
hablamos los humanos, además, procesan miles de millones de datos estructurados y no
estructurados al tiempo que formulan respuestas en base a predicciones que realiza en
tiempo real analizando los datos recopilados.
Los programas de I.A. evalúan miles de páginas de los campos de actuación y capturan los
conocimientos científicos y ofrece las mejores opciones en respuesta a las consultas.
Durante el procedimiento se produce la carga humana de información y luego se descarta
todo el material desactualizado, posteriormente el programa genera un índice y método
paa tee el ejo aeso al oteido igestió. El pogaa se asoia o epetos
huaos ue le eseña a eota patoes de ifoaió, eado la áuia de
apedizaje ue apede los patoes ligüístios y se lo entrena con preguntas y
respuestas, así seguirá aprendiendo en la interacción con los usuarios.
En la medida que nueva información se publica el programa la incorpora y actualiza el
conocimiento y actualización lingüística de cualquier campo. De esa forma el programa se
encuentra capacitado para responder cualquier tipo de preguntas proporcionando una
amplia gama de respuestas y recomendaciones
6 Algoritmos bioinspirados
Los algoritmos bioinspirados son los que resultan de imitar el comportamiento de los
seres vivos, decodificar los procedimientos de actuación y proponerlos para el
funcionamiento de los programas de I.A.
Comportamiento Colectivo de las Colonias de Hormigas
Se debe recordar que las hormigas son prácticamente ciegas, y sin embargo, moviéndose
al azar, acaban encontrando el camino más corto desde su nido hasta la fuente de
alimentos y regresar a su hormiguero. Es importante hacer algunas consideraciones:
1 - Por una parte, una sola hormiga no es capaz de realizar la labor anterior, sino
que termina siendo el resultado del hormiguero completo.
2 - No lo hacen sin "instrumentos", sino que una hormiga, cuando se mueve, deja
una señal química en el suelo, depositando una sustancia denominada feromona,
para que las demás puedan seguirla.
Los siguientes pasos explican porque la forma de proceder de las hormigas hace
aparecer caminos de distancia mínima entre los nidos y las fuentes de comida:
1 - Una hormiga (exploradora) se mueve de manera aleatoria alrededor de la
colonia.
2 - Si esta encuentra una fuente de comida, retorna a la colonia de manera más o
menos directa, dejando tras sí un rastro de feromonas.
3 - Estas feromonas son atractivas, las hormigas más cercanas se verán atraídas por
ellas y seguirán su pista de manera más o menos directa que les lleva a la fuente
de comida encontrada por la exploradora.
4 - Al regresar a la colonia con alimentos estas hormigas depositan más feromonas,
por lo que fortalece las rutas de conexión.
5 - Si existen dos rutas para llegar a la misma fuente de alimentos, la ruta más corta
será recorrida por más hormigas que la ruta más larga.
6 - En consecuencia, la ruta s corta aumentará en mayor proporción la cantidad
de feromonas depositadas y será más atractiva para las siguientes hormigas.
7 - La ruta más larga irá desapareciendo debido a que las feromonas son volátiles y
se evaporan.
8 - Finalmente, todas las hormigas habrán determinado y escogido el camino más
corto.
De esta forma, aunque una hormiga aislada (exploradora) se mueva esencialmente al
azar, un grupo de ellas que pertenecen al mismo hormiguero decidirán sus movimientos
considerando seguir con mayor frecuencia el camino con mayor cantidad de feromonas.
Este análisis se fue profundizando y aplicando a situaciones reales que acontecen en las
empresas como es el problema del agente viajero (T.S.P.) que, teniendo que visitar
clientes en varios pueblos y ciudades, el algoritmo resultante del comportamiento
colectivo de las colonias de hormigas encuentra el camino más corto y económico.
7 - Algunas aplicaciones prácticas de I.A.
Las aptitudes de las computadoras con programas de I.A. podemos dividirlas en tres
grandes grupos: Analíticas, Predictivas y Cognitivas
Campos de aplicación de la IA
Los siguientes son sólo ejemplos, y no una lista completa de campos:
IA en la medicina, que incluye la interpretación de imágenes médicas, diagnóstico,
sistemas expertos para ayudar a los médicos, la monitorización y control en las unidades
de cuidados intensivos, diseño de prótesis, diseño de fármacos, sistemas tutores
inteligentes para diversos aspectos de la medicina.
IA en la robótica, que incluye la visión, el control de motores, el aprendizaje, la
planificación.
• IA e uhos aspetos de la ingeniería: diagnóstico de fallas, sistemas inteligentes de
control, sistemas inteligentes de fabricación, ayuda inteligente al diseño, diseño,
producción, mantenimiento, herramientas de configuración
IA en la educación: incluye diversos tipos de sistemas de tutores inteligentes y sistemas
de gestión de estudiantes.
IA en la gestión de la información: esto incluye el rastreo web, filtrado de correo, etc.
IA en las matemáticas: diseño de herramientas para ayudar con distintas clases de
funciones matemáticas.
• IA e la idustria del etreteiieto: cada vez más se utiliza la IA en los juegos de
ordenador con la generación de películas con dibujos animados interactivos en mundos
virtuales.
IA en la Ley: por ejemplo, sistemas expertos para ayudar a los abogados, o los sistemas
para dar asesoramiento jurídico y ayuda a los no letrados.
IA en la arquitectura, el diseño urbano, la gestión del tráfico, ayudar a predecir el
comportamiento de las personas en los nuevos entornos.
• IA e la literatura, el arte y la música: la identificación de los autores, la modelización de
los procesos de generación y el reconocimiento, las aplicaciones de enseñanza.
IA en la detección y prevención de la delincuencia, detección de falsificaciones,
aprendizaje para detectar indicios de corrupción policial, software para controlar las
transacciones en Internet, ayudar a planificar las operaciones de la policía, búsqueda en
bases de datos policiales de evidencias de que los crímenes son cometidos por la misma
persona, etc.
IA en el comercio: Internet ha permitido que una de las áreas de mayor crecimiento en
cuanto al número de aplicaciones desarrolladas sea el comercio, especialmente el
comercio electrónico.
IA en el espacio: el control a distancia de los vehículos espaciales y robots autónomos.
8 - La inteligencia artificial en la empresa.
Hasta aquí tomamos conocimiento de una serie de situaciones relativas a la I.A.,
entendimos de que se habla cuando la mencionamos, vimos cómo nació esta ciencia
escindida de la informática, observamos los test que definen si una máquina funciona con
I.A., supimos que participación tuvieron los algoritmos bioinspirados en el crecimiento de
la actividad, etc, etc.
Pero ¿para qué nos sirve a los empresarios? ¿Qué función cumple en nuestros trabajos?
¿Qué contribución pueden aportar a nuestra gestión? Etc.
Como mencionamos en párrafos anteriores el abanico de programas de I.A. o I.A.C. Es
muy amplio y nos ofrece, desde soluciones sencillas para problemas sencillos que, no
obstante, ocupan nuestra mente nos comprometen a tomar decisiones y nos fatigan,
hasta problemas complejos, con muchas variables, con riesgos comerciales y económicos
de difícil solución, que abordan situaciones que requieren una sumatoria de datos que no
solemos tener frescos en la memoria y son de difícil obtención.
Esa gama de alternativas cuentan con una amplia gama de costos. Algunos de pocos miles
de pesos hasta otros de varias centenas de miles de dólares.
Si navegamos la web buscando aplicaciones prácticas encontramos un fárrago de
información sobre casos concretos que, si bien nos amplía los conocimientos, no nos
aproximan a lo nuestro, nuestros problemas, nuestras necesidades.
Lo importante es conocer ¿cuáles son los problemas de nuestras empresas que la I.A.
puede resolver más eficientemente y más velozmente?
Una empresa industrial del mercado que trabaja por proyectos, se enfrenta
constantemente con el problema de presupuestar los trabajos que se le presentan como
oportunidad comercial, primero pre-diseñar el equipo en cuestión y recién ahí elaborar el
presupuesto económico.
Esta tarea solía insumirle entre quince días y un mes, con el riesgo de perder la
oportunidad de acceder al negocio por tardanza de la respuesta.
No resulto fácil convencer a los titulares de la empresa y a los responsables específicos de
esta función, que este trabajo podía ser resuelto por un programa de I.A. Por suerte
accedieron a desarrollar un programa específico para resolver esta función ágil y
rápidamente haciéndolos más competitivos.
Otra empresa, muy conocida, de distribución de bidones de agua mineral a domicilio
cuenta con una importante flota de camiones, camionetas y personal para realizar las
entregas, en muchas direcciones y horarios diferentes que insumen un importante costo
de logística.
El programa de distribución lo realiza manualmente un equipo de personas a las que le
insume una cantidad importante de horas de trabajo con ciertas dificultades, mientras
ue podía utiliza el pogaa Problema del Agente Viajeroque les resolvería
eficientemente la optimización de la distribución, más rápida, segura y económica.
Uno de los problemas que se les presentan a las empresas que se ocupan de retail, es el
de definir la conveniencia, o no, de incorporar un nuevo producto a la línea de oferta. Esta
decisión contempla la aplicación de una fórmula particular para cada empresa, en la que
se contemple: el espacio físico que ocuparía el stock requerido, la rotación de los
productos, el costo financiero de mantener el stock, la contribución económica de cada
unidad y del stock de mantenimiento, etc. El resultado de la aplicación de esta fórmula
nos evita las dudas en la toma de decisión. Seguramente la elaboración de esta fórmula
lleva tiempo y participación de algunos profesionales, pero solo una vez, luego la
respuesta es inmediata.
Es importante que las empresas pymes se familiaricen con la I.A. y la I.A.C. porque este es
un modelo de gestión que no vuelve atrás, al contrario, avanza cada vez más rápido y
eficientemente.
El ojetivo fudaetal es Mejorar la Productividad” y este es un modelo muy eficiente
para lograrlo.
Conviene que las empresas pymes vayan tomando contacto progresivamente con estos
modelos de gestión estimando, primero, si conviene utilizar fórmulas que resuelvan los
problemas reiterativos que obligan a analizarlos cada vez que se presentan y tomar
decisiones.
Luego, más adelante, estudiar la posibilidad de implementar un E.R.P. (Planificación de
Recursos Empresariales) haciendo participar a un profesional de informática.
Cuando se sientan entrenados en conducir la empresa apoyándose en sistemas
informáticos, proponemos que evalúe la alternativa de utilizar I.A. y si lo justifica I.A.C.
El programa Watson de I.B.M. resulta de muy amplia participación en materia de
Inteligencia Cognitiva, explorando todo tipo de información sobre el campo de aplicación,
analizando los contenidos, descartando la información obsoleta e incorporando la nueva
en su reemplazo.
CAPA DE ENTRADA CAPA OCULTA CAPA DE SALIDA
MARKETING ALGORITMOS GENÉTICOS PRODUCTO O SERVICIO
VENTAS ANÁLISIS DE ETAPAS DE GESTIÓN FACTURACIÓN/COBRANZA
COMPRAS SOLUCIONES CON I.A. DISTRIBUCIÓN
FINANZAS POS-VENTAS
9 Algoritmos de Gestión en las Empresas
Los algoritmos de gestión resultan de analizar minuciosamente todas las etapas de
agregado de valor de la empresa, desde la oportunidad comercial hasta la entrega,
facturación y cobranza del producto o servicio pasando por todos los procedimientos que
posibilitan el funcionamiento del negocio y las interconexiones que imitan las conexiones
neuronales con sus axones, dendritas y sinapsis.
OPORTUNIDAD
COMERCIAL
PRODUCTO
DE CARTERA
NECESITA
COTIZACION
SE INCORPORA
A CARTERA
COTIZA AL
CLIENTE
ACEPTADA
ARCHIVO
COMUNICACIÓN
AL PERSONAL
HAY
EXISTENCIA
OPERACIÓN
PUNTUAL
DEFINE
DISTRIBUCION
SE DESESTIMA
RESUELVE
EMISION DE
NOTA DE VENTA
REMITO Y
FACTURA
REQUERIMIENTO
Y ORDEN DE
COMPRA PROV.
RECIBE DOC.
DESPACHOS Y
RECEPCIONES
INGRESA
A
SISTEMA
AUTORIZACION
CREDITOS Y
COBRANZAS
CONTROLA
EXISTENCIAS,
MOVIM. DE
STOCK Y
DEVOLUCIONES
RECIBE COPIA
ORDEN DE
COMPRA
RECIBE
PRODUCTOS Y
DOCUMENTACION
CONTROLA Y
COMPARA O.C.
ARMADO
DEL
PEDIDO Y
DESPACHO
DOCUMENTACION
DE ENTREGA A
CLIENTE
DISPONE Y
ALMACENA
PRODUCTOS
ATENCION A
CLIENTES
HAY
EXISTENCIA
FACTURA
COBRA Y
ENTREGA
SOLICITA A
DEPOSITO
CENTRAL
DOCUMENTACION
DE VENTAS, CAJA Y
VALORES
RECIBE
REQUERIMIENTO
REQUIERE
INSUMOS O
MATERIALES
FABRICA Y
ENTREGA A
QUIEN
CORRESPONDE
ALGORITMO GENÉTICO
NEURONAS
AXONES Y
DENDRITAS
De la graficación de los procedimientos podemos analizar, en la práctica, las posibilidades
de incorporar los modelos propuestos, para optimizar los tiempos y costos de gestión de
la empresa.
Veamos algunos ejemplos de programas que están en el mercado:
Crystal
Crystal es una plataforma que permite ver los perfiles de personalidad de los clientes y da
consejos sobre cómo debemos comunicarnos con ellos. Gracias a su inteligencia artificial,
nos ayuda a construir relaciones más sanas y más productivas. En concreto, Crystal ofrece
pistas sobre cómo y a través de qué canal hablar, detalles sobre el comportamiento de
nuestros interlocutores, etc. Todo ello trabajando el antiguo principio de la empatía.
Tamr
Tamr es una herramienta, usada tanto por grandes empresas como Cisco, HP o Huawei
como por pymes, que permite integrar y analizar automáticamente un sinfín de datos de
la compañía para, mediante machine learning, permitir detectar áreas de mejora en la
organización, focos donde reducir el gasto o potenciales riesgos de la empresa. Todo ello
mediante una interfaz muy sencilla en la que se pueden realizar cuestiones al sistema y
éste se encargará de procesar y devolvernos los datos correspondientes interpretados
para que, simplemente, tomemos las mejores decisiones de negocio.
Recorded Future
Recorded Future es una herramienta inteligente que vigila, en tiempo real y de manera
proactiva, cualquier posible ciberamenaza en contra de nuestra empresa. Su motor de
inteligencia artificial es capaz de analizar miles de millones de datos de forma continuada
y anticiparse a un posible ataque. No en vano, esta firma asegura que logran lanzar alertas
sobre fugas de datos hasta 36 horas antes que otras plataformas, ahorrar medio día
cuando se producen avisos de vulnerabilidades y obtener investigaciones sobre
ciberseguridad hasta 10 veces más rápido que sus rivales.
Gluru
¿Quién quiere secretarios cuando tenemos a Gluru? Se trata de un asistente personal que,
por medio de su inteligencia artificial, es capaz de gestionar nuestro calendario, avisarnos
de reuniones o eventos, hacernos informes sobre las tareas pendientes, controlar nuestro
correo electrónico y encargarse de nuestros archivos electrónicos.
X.ai
En la misma línea del anterior encontramos a X.ai, un asistente personal que, en este caso,
está especializado en gestionarnos reuniones de forma automatizada, incluso contestando
a los correos electrónicos con nuestros invitados como si se tratara de una secretaria de
carne y hueso. Así, cuando recibamos una petición para reunirnos con alguien, tan sólo
hay que poner en copia a la servicial Amy (un bot inteligente) y el asistente virtual se
eagaá de esii u eail pesoalizado o las fehas dispoiles  el luga
propuesto para el encuentro. Una vez que el otro interlocutor confirme la cita, Amy se
ocupará de añadir rápidamente esa cita a nuestro calendario.
Siri
Al ayudante personal de Apple, Siri, también se le puede sacar su jugo en el entorno
profesional, aunque obviamente muy lejos de las posibilidades anteriormente enunciadas.
Nos puede ayudar, mediante su reconocimiento de voz, a escribir correos electrónicos
mientras hacemos otras tareas y también nos puede recordar citas en nuestro calendario
que se nos hayan olvidado. Y, lo mejor, es gratis para usuarios de dispositivos de esta
compañía.
Conversica
Conversica es un asistente de ventas automatizado que es capaz de relacionarse de forma
autónoma con clientes potenciales a través de conversaciones de correo electrónico
bidireccionales. La herramienta envía mails a leads que ha captado o que hemos
incorporado como fuentes; tras lo cual es capaz de interpretar la respuesta del contacto,
hacer un seguimiento del mismo y, finalmente, dar un aviso a un comercial cuando haya
una oportunidad clara de venta.
La Inteligencia Artificial (I.A.) y la Cognitiva (I.A.C.) dejaron
de ser una amenaza, son una fuerte oportunidad para
aprovechar en nuestros negocios.
Eduardo Bronzino
www.progresa-pga.com.ar
pgas@pgas.com.ar

Hazle saber al autor que aprecias su trabajo

Tu opinión vale, comenta aquíOculta los comentarios

Comentarios

comentarios

Compártelo con tu mundo

Escrito por:

Cita esta página
Bronzino Eduardo. (2017, agosto 11). Inteligencia Artificial aplicada a las empresas PYMES. Recuperado de https://www.gestiopolis.com/inteligencia-artificial-aplicada-las-empresas-pymes/
Bronzino, Eduardo. "Inteligencia Artificial aplicada a las empresas PYMES". GestioPolis. 11 agosto 2017. Web. <https://www.gestiopolis.com/inteligencia-artificial-aplicada-las-empresas-pymes/>.
Bronzino, Eduardo. "Inteligencia Artificial aplicada a las empresas PYMES". GestioPolis. agosto 11, 2017. Consultado el 15 de Agosto de 2018. https://www.gestiopolis.com/inteligencia-artificial-aplicada-las-empresas-pymes/.
Bronzino, Eduardo. Inteligencia Artificial aplicada a las empresas PYMES [en línea]. <https://www.gestiopolis.com/inteligencia-artificial-aplicada-las-empresas-pymes/> [Citado el 15 de Agosto de 2018].
Copiar
Imagen del encabezado cortesía de mikeycordedda en Flickr
DACJ