Análisis productivo de alcalización de jugo mezclado en tanque flash

Page 1
El tanque flash.
Consideraciones para su diseño, remodelación o reconstrucción.
Ing. Florentino FalcónI
Resumen
El tanque flash es parte esencial en cualquier esquema utilizado para la alcalización de los jugos de
caña, en el finalizan las reacciones de purificación e inicia la formación del floculo de fosfato tricálcico y
otros productos, en medio de flasheo continuo de gases, aire y vapor de agua; esta simultaneidad de
operaciones conforman un proceso sui generis diferente y por tanto complejo; esta dualidad de funciones
hacen que su importancia tecnológica decida en los resultados finales del proceso de purificación así
como en la eficiencia de fabrica.
A pesar de su importancia la información disponible acerca del efecto flash es realmente escasa y ello
limita cualquier iniciativa del ingenio para corregir, mejorar cualquier diseño o hasta diseñar un nuevo
tanque.
Con este trabajo se pretende a través de una detallada revisión brindar la ingeniería básica de un
sistema simple, practico y sobre todo seguro que pueda ser utilizado para realizar modificaciones
sobre un tanque existente para corregir problemas durante la operación o simplemente realizar un nuevo
diseño si fuese necesario para asumir las variaciones que se producen durante la operación sin que se
afecte la clarificación del jugo ni la calidad del azúcar a producir.
Palabras claves: Tanque Flash, alcalización, clarificación, efecto flash.
ABSTRACT.
Flash tank is important piece of any alkalinization procedure, complex processes are going to be
happening stable and continuously inside it to conditioning the juice properly before being fed to the
clarifiers so all aspects with its construction, design and of course with the operation they will be crucial
for the clarification of cane juices.

indices of capacity, retention time as well as diameter and height relationship for the most common
designs are found in literature, this paper will be focused on the mechanisms that occurred during the
process of flashing and would improved a practical, simple and safe method as a valuable tool for
any modification, improvements or simply to solve any operating troubles in order to make more efficient
the clarification process of raw sugarcane juice.
Keywords: Flash tank, alkalinization, clarification, flash effect.
I Ingeniero químico Osceola Farms Co.sugarmaster@att.net
Page 2
Introducción.
El tanque flash es el punto intermedio de cualquier procedimiento empleado para la alcalización del jugo
mezclado; que ,  (1975): persigue con sus dos
agentes básicos: cal y calor, producir jugos claros, transparentes y libres de sólidos en suspensión, a
través de complejas reacciones y diferentes procesos hasta ponerlos en reposo en un clarificador
adecuado
Complejos procesos van a estar ocurriendo estable y continuamente dentro del tanque flash para poder
acondicionar el jugo adecuadamente antes de ser alimentado a los clarificadores por lo tanto los
aspectos relacionados con su construcción, diseño y por supuesto con la operación serán decisivos para
el resultado final de la clarificación de los jugos.
Cualquier modificación en la tecnología de alcalización, en el calentamiento del jugo o en la capacidad
de clarificación demandara ciertos ajustes o modificaciones en el tanque flash para que así la eficiencia
en el proceso de clarificación no se vea afectada, sin embargo no existe un sistema o método de
cálculo, que permita que las modificaciones realizadas por los ingenios estén sustentadas en los
principios básicos de ingeniería del efecto flash aplicado a los esquemas de alcalización de los jugos de
caña.
A pesar de ser tan importante la información disponible acerca del efecto flash en los esquemas de
alcalización de jugos de caña es escasa, solo encontramos referencias acerca de índices de capacidad,
tiempo de retención y relaciones diámetro-altura, para los diseños más comunes o tradicionales
limitando así cualquier iniciativa para introducir mejoras, modificaciones o simplemente intentar resolver
problemas operativos que hagan más eficiente el proceso de clarificación, partiendo del precepto
    de que :la clarificación es el paso más importante en la fabricación de
azúcar.
Por esa razón este trabajo es enfocado a
estudiar el efecto flash en los esquemas de
alcalización de jugos de caña con sus
mecanismos a fin de establecer un método
practico y sencillo que pueda ser utilizado como
guía y obligada referencia para realizar cualquier
modificación, ampliación o hasta para diseñar un
nuevo tanque flash ajustado a las condiciones
propias de cada ingenio si resultara necesario
Figura 1 Tanque flash vertical.
Page 3
Para realizar este trabajo hemos revisado la literatura existente así como diseños, algunos modificados
una y otra vez hasta alcanzar la mejor condición de operación para satisfacer las demandas de una
molida horaria mayor o lograr niveles superiores en la calidad del jugo. En este universo de diseños
hemos clasificado los tanques en horizontales o verticales según su disposición, los horizontales a pesar
ofrecer mayor superficie de flasheo con igual geometría resultan ser los menos extendidos, es por ello
que se ha tomado el diseño vertical con alimentación centralizada para el desarrollo de este trabajo.
Materiales y métodos.
La calidad del azúcar y la eficiencia de fabrica están vinculadas al proceso de alcalización, en el que un
conjunto de reacciones químicas entre el Ca2+ y las impurezas presentes en el jugo, se llevaran a cabo
en medio de procesos de calentamiento escalonado hasta alcanzar una temperatura en el rango de 103
a 106 C para así obtener el mayor grado de remoción posible de estos no azucares; entregar un jugo
claro, transparente y libre de sólidos en suspensión a los evaporadores.
El tanque flash esta
justo en el centro este
complejo proceso de
alcalización, según se
muestra en la Figura
2; dentro de él van a
finalizar todas las
reacciones químicas
de purificación
iniciadas en el tanque
de jugo mezclado,
pero
simultáneamente
comenzara el proceso
de formación del
floculo de fosfato
tricálcico II , para
finalmente iniciar su
decantación y
II Principal componente de los lodos extraídos de los clarificadores y que son enviados para su agotamiento a la estación de
filtración.
Figura 2 Esquema de alcalización fraccionada.
Page 4
separación del jugo claro en cada una de las bandejas o celdas de los clarificadores; esta simultaneidad
de operaciones hacen que la dinámica en su interior sea probablemente la más compleja dentro del
proceso y quizás también la más desconocida.
El efecto flash es ampliamente utilizado en la industria química para la recuperación de vapor en
sistemas de condensados, en evaporadores a múltiple efecto y hasta en la recuperación de ciertos
componentes en sistemas binarios, pero la aplicación más compleja es la que se presenta en los
esquemas de alcalización de jugos de caña ya que además de la separación de aire ocluido en el jugo,
gases y vapor de agua será el punto final de un reactor donde transformaciones sucesivas estarán
ocurriendo continuamente durante la operación.
Un tanque apropiado debe permitir que la desgasificación del jugo, el flasheo de vapor así como la
formación del floculo se lleven a cabo en un perfecto balance para asumir la molida horaria en
concordancia con la calidad de la caña que se muele en el ingenio; para ello cualquier diseño deberá
cumplir con los requisitos tecnológicos siguientes:
1. Área de flujo suficiente para facilitar la salida del aire ocluido, gases procedentes de la
reacción de alcalización más todo el vapor que produce el efecto de flasheo sin arrastres de jugo
ni de cachaza.
2. Tubo de venteo con área de flujo suficiente para conducir el flujo flasheado hacia la atmosfera
y evitar que el tanque opere presurizado.
3. Salida del jugo hacia los clarificadores; dimensionada de tal forma que este se distribuya
uniformemente en cada uno de ellos en régimen laminar.
4. Plato de flasheo con área suficiente para facilitar la salida de gases, vapor y ayudar a la
formación del floculo.
5. Capacidad volumétrica ajustada al tiempo de retención necesario para que la reacción de
floculación finalice dentro del tanque.
Parámetros
Valores
Formulas
Fv= Flujo de vapor.

Ec.1
Fj= Flujo de jugo alcalizado.
T2= Tempe. salida de calentadores.
T1= Tempe. de flasheo del jugo.
Fjf
Ec.2
Cp= Capacidad calórica del jugo.

Fjf= Flujo de jugo frio.


Ec. 3
Hv= Rate de evaporación medio.
Af= Área de flujo en tanque flash.
Tabla 1 Balance de materiales para un tanque flash.
Page 5
Definir las condiciones de operación justo a la entrada del tanque flash, será el primer paso para
establecer un balance de masa y energía que nos permita identificar las variables involucradas en este
complejo proceso en el que como resultado se obtienen tres ecuaciones básicas necesarias para
calcular el diámetro del tanque flash en las condiciones particulares de operación del ingenio, mismas
que se muestran en la Tabla 1, nótese que en la Ec. 3 se incluye el término Hv, este no es más que un
índice de la medida del flujo másico de evaporación medio permisible por unidad de área para que el
flasheo ocurra sin arrastres de jugo, según Oliver Lyleuso eficiente del vapor (1956) y que
en la práctica es quien nos dará la seguridad de que la burbuja de vapor mas los gases producidos
abandonaran el seno del jugo dentro del tanque flash sin arrastres de jugo o de cachaza.
La muestra más evidente de que el tanque flash no opera adecuadamente se puede apreciar en la torre
o chimenea de venteo cuando la mezcla de los gases con vapor de agua arrastra jugo y cachaza a
través del tubo a consecuencia de un ficit en su área de flasheo para esas condiciones puntuales de
operación. Esta situación además de producir considerables pérdidas en azúcar va a impedir que el
proceso de flasheo finalice dentro del tanque, trasladándose hacia la cámara de alimentación o primera
bandeja del clarificador; donde el flasheo continuo en esta zona diseñada y construida para la
decantación probablemente sea la principal causa que va a determinar que los jugos de la primera
bandeja correrán con bagacillo y pequeñas partículas de cachaza en suspensión.
La única a posible para evitar este problema es logrando que las pérdidas de presión a través del
tubo de flasheo sean mínimas, por esa razón la velocidad del vapor no puede exceder de dos m/seg, de
acuerdo con Falcón F.; Esturo C et al. (1995). Tomando esta condición
como limitante, utilizando los resultados obtenidos en la Ec.1 y haciendo los ajustes matemáticos
necesarios se obtiene la Ec.4 en la Tabla 2, que es la que nos permiti obtener el diámetro del tubo
de venteo ajustado a las condiciones de operación; es necesario apuntar que los resultados que
obtendremos son referidos a condiciones que fijaran un límite mínimo indispensablemente para la
operación normal.
La distribución del jugo hacia los clarificadores es cardinal en la operación del proceso, puesto que si el
sistema no está dimensionado adecuadamente algunos clarificadores serán llenados con más rapidez
que otros lo que inevitablemente inducirá un desbalance en la corrida de jugo claro y se producirán
retenciones no deseadas de jugo dentro del propio tanque flash, por otro lado hay que tener en cuenta
Parámetros
Valores
Formulas
Ve= Volumen especifico del vapor.
1.673 m3/ton


Ec.4
Vv= Velocidad del vapor.
1.5 a 2.0 m/seg
Ф = Diámetro del tubo de venteo.
Ф1=0.923 m
Tabla 2 Estimación del diámetro del tubo de flasheo.
Page 6
que el jugo flasheado que fluye hacia los clarificadores es una mezcla cuya composición variable puede
rebasar el 50% en peso de sólidos gracias a la presencia de lodo en tiempo de lluvia, tierra o arena en
adición a los floculos de fosfato tricálcico, aspecto que se debe tener en cuenta a la hora de estimar el
diámetro salida del jugo así como la pendiente de las líneas de distribución hacia cada una de las
secciones de los clarificadores.
Para poder estimar los diámetros estableceremos un balance entre el nivel de operación del tanque flash
como punto inicial y el clarificador más lejano como punto final , para ello se utilizará la ecuación general
del balance dinámico de flujo de fluidos;
Ec. 5 de la Tabla 3 y que al evaluar sus
términos entre estos puntos se transforma
en la Ec. 6 donde queda clara y
terminantemente    
hidrostática disponible tiene que ser
siempre mayor que las pérdidas
producidas por ese sistema para que a
cada uno de los clarificadores llegue la
cantidad de jugo acorde con su
 A modo de ejemplo hemos
partido de un sistema con tres
clarificadores de igual capacidad
distribuidos uniformemente como se indica
en la Fig.3.
Utilizando la ecuación empírica propuesta por William and Hazen, pág. 27 Cameron Hydraulic Data
para la estimación de las pérdidas producidas por el flujo (hf) a través del sistema de tuberías y tomando
Parámetros
Valores
Formulas
HP= Potencia de bombeo.
HP= 0


Ec.5
N= Carga hidrostática.

P= Diferencia de presión.
P=0
HV= perdidas dinámicas.



Ec.6
HD= perdidas por fricción.
HD= 3.90 pies
HDn=Perdida de carga por sección.


Ec.7
hf = Factor de perdidas por fricción por cada 100 pies de Let.
Let= Longitud equivalente total, incluye la sección recta
más todos los accesorios instalados.
Leq=Lr+ Lac
Ec.8
Tabla 3 Sistema de ecuaciones para el balance de flujo en la distribución de jugo flasheado.
Figura 3 Distribución de flujo para tres clarificadores.
Page 7
como limitante una velocidad del flujo en el rango de dos a cuatro pies/seg.se obtiene que la carga
hidrostática mínima ha de ser de cuatro pies.
Poco se habla de la superficie de flasheo, sin embargo el propósito principal de un plato o superficie
de flasheo es facilitar el proceso de auto evaporación así como contribuir al acondicionamiento del
floculo de fosfato tricálcico siempre antes del proceso de nucleación que va a tener lugar con la adición
del floculante aniónico para que su decantación sea mucha más ágil y eficiente dentro del clarificador;
este plato se encuentra en los diseños más comunes de fabricantes de clarificadores, su forma y
ubicación es variada, desde utilizar la sección interior del propio tanque o deflectores en alimentación
tangencial, mallas perforadas o simplemente un plato. Se considerara para este trabajo un plato que
debetener un área no mayor del 30% del área total del tanque flash donde será instalado, algunos
diseños presentan bafles rectos o en forma helicoidal, probablemente buscando mayor retención.
Aunque las opiniones respecto a cuál ha de ser el tiempo optimo de retención del jugo dentro del
tanque son variadas, todas tienen como factor común         
, según se indica
en Índices de capacidad para ingenios de crudo de Cuba (1971), lo que es equivalente a un volumen de
alrededor de unos 25 pies3 por cada 1,000 TCM, sin embargo en la literatura existen algunas reportes
cuyos valores llegan hasta cinco minutos, no obstante y solo para este trabajo hemos considerado que
un tiempo de dos minutos es suficiente para que todos los gases, aire y vapor por flasheo abandonen el
seno del jugo antes de salir del tanque, que es básicamente el principio que debe primar a la hora de
hacer cualquier modificación o diseñar un nuevo tanque.
Una vez definido el tiempo de retención, para nuestro ejemplo será de dos minutos y conociendo el
diámetro del taque flash, se procede a estimar el volumen de operación según se indica en la Ec. 9,
entonces con estos datos, la geometría o diseño del tanque y utilizando algoritmos matemáticos
comúnmente empleados para aforar equipos de casa de calderas se procederá a calcular el nivel de
operación considerando la sección recta y el cono inferior como se indica en la Ec.10 de la Tabla 4.
Parámetros
Valores
Formulas
Q J= Flujo de jugo alcalizado
500.00 ton/hr
 Q J
Ec. 9
473.00 m3/hr
2,100 gpm

2 min.
V= volumen de jugo retenido
15.68 m3
HJ= Nivel de operación del tanque
1.58 m
HJ= HSECCION RECTA + HSECCION CONICA
Ec. 10
Diámetro del tanque flash.
4.04 m
Tabla 4 sistema de ecuaciones para calcular el nivel de operación del tanque flash.
Page 8
Finalmente con este procedimiento ha quedado estructurado el sistema de cálculo para un tanque flash
ajustado a las condiciones propias de operación del ingenio, para conocer si los resultados que ofrece
son reproductibles y seguros vamos a establecer una comparación con métodos establecidos que
tradicionalmente se han venido empleando en la industria azucarera de caña.
Resultados y discusión.
Para nuestro propósito tomaremos como punto de referencia un ingenio de unas 10,000 TCDIII de
capacidad cuya molida horaria enviara continuamente unas 500 ton/hr (2,100 gpm) de jugo mezcladoIV
con 14.5 ºBrix, al sistema de alcalización fraccionada en el que el jugo después de ser pre alcalizado en
el tanque para el jugo mezclado es calentado en dos pasos hasta alcanzar una temperatura de 103 ºC
a la salida de los calentadores rectificadores, según se indica en la Fig. 1, entonces sustituyendo estos
datos en cada una de las ecuaciones correspondientes se obtendrán los paramentaros necesarios para
definir la capacidad, área de flujo y altura o nivel de operación del tanque flash para esta molida.
El área de flujo que demanda este tanque será de
Af1=12.85m2, ella representa un índice de capacidad de
0.330 pies2 por TCHVI , de hecho un resultado consistente
acorde con los índices que usualmente se manejan según
se aprecia en la Tabla 2 y el diámetro del taque flash
relacionado con esta se de Ф=4.04m; similarmente
dentro del rango de valores que son reportados en la
literatura por tradicionales fabricantes de equipos y reconocidos autores, además la predicción del
diámetro del tanque flash por este sistema
tiene un comportamiento muy similar al que
sugieren importantes diseñadores y
constructores de equipos, según se
aprecia la grafica 1, de manera que aun
cuando sus resultados sean conservadores
serán confiables y seguros por encima
de todo , es importante acentuar que el
   condiciones técnicas
mínimas necesarias.
III Toneladas de Cana por Día de operación.
IV Se considera que el flujo de jugo alcalizado representa el 120% en caña.
V Para tanques verticales con una altura fija de 2.00 m.
VI TCH: toneladas de caña molida por hora, molida horaria.
Fuente
Pies2 por TCH
Índice Capacidades
0.150
Door
0.200
L.A. Tromp
0.250
F. Falcón
0.330
Senén Diego
0.330
Fletcher & Smith
0.393
SUGARTECV
0.400
Tabla 2 Índices de capacidad.
0.5
1.5
2.5
3.5
4.5
5.5
6.5
0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0
Diametro en m
Flujo de jugo alcalizado en ton/hr.
Falcon
Fletcher
Sugartech
Grafico 1 Comportamiento del diámetro del tanque flash Vs flujo de
jugo alcalizado por tres sistemas.
Page 9
El diámetro del tubo de venteo es tan o más importante que el del propio tanque principal porque a
través de él saldrán hacia la atmosfera el flujo de todos los gases y vapor producto de este complejo
proceso para a evitar que haya presión dentro del cuerpo principal lo que significa que el mismo
trabaje . De la tabla 3 se aprecia que el diámetro mínimo necesario para el tubo de venteo
en estas condiciones se de Ф1=0.923 m (36 plg), la relación adimensional entre los diámetros de
Venteo/Tanque que se obtiene será igual a 0.23 que es lo que usualmente se maneja, siendo otro
elemento muy positivo en la comparación que estamos estableciendo.
La superficie de flasheo se estima como una función del diámetro del tanque principal, en este caso se
considera que un 30% resulta adecuado para facilitar tanto el proceso de flasheo como contribuir a la
formación del floculo. Su ubicación preferencial al centro del tanque flash, algunos trabajos realizados
por ingenios lo ubican con cierto desplazamiento pero siempre conservando las proporciones arriba
indicadas y dejando espacio para crear un área suficiente para que el resto de los gases y vapores
emanen desde el seno del jugo. Un informe de un floculador en línea ubicado justo después del tanque
flash reporta resultados positivos en la formación del floculo antes de su ingreso a los clarificadores.
El nivel de operación en algunos casos discutible, es lógico que así sea ya que por la dinámica constante
en el interior del tanque resulta difícil su medición y hasta su apreciación física, pero más que eso es una
referencia obligada y necesaria para conocer cuál será la carga hidráulica disponible para la distribución
del flujo, solo a partir de él se podrá estimar con mejor exactitud cuál ha de ser el diámetro requerido en
cada una de las secciones de distribución de jugo flasheado, tal y como se indica en la figura 3 donde
hemos considerado a modo de ejemplo un ingenio en opera con tres clarificadores de igual capacidad
para esta molida.
Por la importancia que este aspecto tiene es aconsejable chequear la distribución de tuberías teniendo
en cuenta las capacidades en clarificación a fin de comprobar si los diámetros instalados se
corresponden con los calculados e igualmente durante la inspección del desarme y la reparación
inspeccionar cada línea para decidir si requiere de algún trabajo especial o simplemente ser sustituida
En la figura 4 se muestra un tanque de diseño vertical y horizontal con las dimensiones que se han
obtenido a partir de esta simulación y aunque ambos casos responden a estas condiciones especificas,
ocurre que durante la operación diaria estas suelen modificarse por ello y para saber cómo responderá
este diseño ante las variaciones de la molida horaria o de la temperatura del jugo a las salida de los
calentadores rectificadores realizaremos un nuevo análisis; ahora teniendo en cuenta un incremento de
la molida horaria de un 10% así como de dos grados en la temperatura a la salida de los calentadores
rectificadores, entonces re calculamos de nuevo utilizando esta data de valores y verificamos los
resultados a fin de conocer como se comportara el diseño ante estos extremos.
Page
10
Los resultados que se exponen en la Tabla 5, resultan muy elocuentes, el cuerpo del tanque es capaz de
                   
 
dos grados              , su recuperación
probablemente más lenta y por tanto más dañina al proceso. Esta simulación nos ha ilustrado como
reaccionael tanque ante las variaciones normales que tienen lugar durante la operación en la zafra
por tanto el debe estar dimensionado para asumir esas variaciones sin afectación a los procesos que en
el ocurren de manera que la selección apropiada de los valores y sus rangos sede suma importancia
para obtener las condicionesnimas necesarias.
Diámetro
500 ton/hr
550 ton/hr
500 ton/hr
103 oC
103 oC
105 oC
Tanque Flash
12.85 m2
14.13 m2
10 %
21.41 m2
66 %
Tubo de venteo
0.923 m
0.960 m
5%
1.12 m
21%
Tabla 5 Comportamiento del tanque ante condiciones picos.
Figura 4 Tanque flash con alimentación central.
Page
11
Conclusiones.
La calidad del azúcar a producir así como la eficiencia de fabrica van a estar vinculados a los procesos
de alcalización del jugo, los que en su inmensa mayoría se inician en el tanque de jugo mezclado y
tienen como punto intermedio el tanque flash donde van a terminar todas las reacciones entre Ca2+ y los
no azucares presentes en el jugo al tiempo que se inicia la formación del floculo de fosfato tricálcico;
por ello se hace necesario que este punto intermedio entre las reacciones químicas y la decantación de
sus productos este ajustado de forma tal que exista un equilibro entre estas dos imprescindibles
operaciones como únicaa para mantener altos niveles de eficiencia en las condiciones particulares de
cada proceso. Es muy importante acentuar que en ocasiones realizamos ciertos arreglos en el área en
cuanto a capacidad o modificaciones en el esquema de uso del vapor para incrementar la temperatura
del jugo a la salida de los calentadores rectificadores pero olvidamos el tanque flash, es entonces que
apreciamos que el resultado de esos trabajos y esfuerzos pueden ser dudosos e inconsistentes solo por
el simple hecho de no haber considerado la importancia que el tanque flash tiene.
El tanque flash más apropiado será aquel capaz de asumir eficientemente picos de molida e incrementos
en la temperatura del jugo sin perjuicio de las operaciones que se llevan a cabo dentro de él de ahí la
importancia de la selección adecuada de los datos y parámetros a utilizar para cualquier trabajo que se
pretenda acometer o incluso para un nuevo diseño.
Resulta indispensable apuntar que cualquier diseño de tanque flash debe operar sin presión, para ello el
tubo de venteo y el área de flasheo del tanque deberán estar perfectamente balanceados en capacidad y
tiempo de retención, con independencia de cualquier opinión al respecto, pues es la garantía de que el
flasheo de gases, vapor y aire se produzca dentro del tanque y nunca en las maras de alimentación
de cualquier clarificador, con lo que estaríamos evitando una, sino la principal, causante de la presencia
de bagacillo u otras partículas insolubles en suspensión en las primeras bandejas de corridas de los
clarificadores.
A través de este trabajo se ha estudiado el efecto flash en los esquemas de alcalización de jugo en la
industria azucarera de caña y esto nos ha servido para obtener un método de cálculo simple, practico y
seguro, con el que cualquier ingenio podrá aforar la capacidad de su tanque flash instalado
independientemente de su diseño y, en caso necesario, realizar las renovaciones o modificaciones
precisas con un sustento tecnológico que evitara errores sucesivos o simplemente soslayar importantes
detalles, haciendo que los trabajos que se ejecuten ofrezcan resultados consistentes que redunden en
una mayor eficiencia de fabrica con una calidad superior en el tipo de azúcar a producir.
Page
12
Referencias bibliográficas.
Bobadilla G., Alejandro, 1975. Algunas consideraciones sobre tanques de flash y suministro de bagacillo en
la clarificación de crudo. ATACORI.
Chane J. Cane sugar handbook 11th Edition. Clarification reactions and control. Pag.142,
Díaz E. 1996.Nuevo bloque tecnológico para la purificación de guarapo. MINAZ. La Habana.
E.P.A. 2006. Optimize glycol circulations and install flash tank separators. Washington.
Falcón F.; 1998. Notas personales y cálculos para un clarificador de bajo tiempo de residencia en Central
Motzorongo. Veracruz.
Falcón F.; Esturo C et al. 1995. Manual de operaciones para la producción de crudos. MINAZ. 376 páginas.
La Habana.
Hausbrant E. Evaporating, condensing and cooling apparatus.
Indicaciones para el desarme y reparación de los equipos de la casa de calderas. 1995. MINAZ. La
Habana.
Índices de Capacidades para Ingenios de crudos de Cuba. 1971. Editora Revolucionaria. La Habana.
Keenan Q. and Keyes F. 1949. Thermodynamics properties of steam. New York.
Lamusa J.P. March, 1977.The capacity of clarifier flash tank. The south African Journal.
Navarrete E. 1983. Aspectos a tener en cuenta en el diseño de un tanque flash. MINAZ. La Habana.
Norma para la sustitución total o parcial de los equipos de la casa de calderas. 1994. MINAZ. La Habana.
Oliver Lyle. 1956. Chapter 13.The efficient use of steam. London.
Pedrosa Puertas. R. 1975. Fabricación de azúcar crudo de caña. Editora Revolucionaria. La Habana.
Prefloculation system. 1976. Fabcon.
Subodh V. Joshi. June 2006. The short retention clarifier. ISSCT Processing workshop. Louisiana.

Trocolli, J.E. What you should know about flash tanks. Sarco Co. Inc.
Wayne C, Tunner. Energy Management Hand Books. Pág. 152
Webre A.L. 1949. Fabricación de azucares crudos de Buena calidad. XXXIII Memoria de la A.T.A.C. La
Habana

Hazle saber al autor que aprecias su trabajo

Estás en libertad de marcarlo con "Me gusta" o no

Tu opinión vale, comenta aquíOculta los comentarios

Comentarios

comentarios

Compártelo con tu mundo

Escrito por:

Cita esta página
Falcón Florentino. (2013, marzo 13). Análisis productivo de alcalización de jugo mezclado en tanque flash. Recuperado de http://www.gestiopolis.com/analisis-productivo-de-alcalizacion-de-jugo-mezclado-en-tanque-flash/
Falcón, Florentino. "Análisis productivo de alcalización de jugo mezclado en tanque flash". GestioPolis. 13 marzo 2013. Web. <http://www.gestiopolis.com/analisis-productivo-de-alcalizacion-de-jugo-mezclado-en-tanque-flash/>.
Falcón, Florentino. "Análisis productivo de alcalización de jugo mezclado en tanque flash". GestioPolis. marzo 13, 2013. Consultado el 9 de Diciembre de 2016. http://www.gestiopolis.com/analisis-productivo-de-alcalizacion-de-jugo-mezclado-en-tanque-flash/.
Falcón, Florentino. Análisis productivo de alcalización de jugo mezclado en tanque flash [en línea]. <http://www.gestiopolis.com/analisis-productivo-de-alcalizacion-de-jugo-mezclado-en-tanque-flash/> [Citado el 9 de Diciembre de 2016].
Copiar
Imagen del encabezado cortesía de 66992990@N00 en Flickr