Evaluación de Inversiones

“EVALUACION DE INVERSIONES”
Econ. Domingo Carrasquero R.
balacarr@hotmail.com
RESUMEN
El objetivo general de este informe es el “Analizar el los elementos financieros
a considerar cuando se evalúa una decisión de inversión”. Las finanzas
corporativas son un campo fascinante, considerando como una de las aéreas
donde se refleja el impacto de las decisiones que toman los directivos en las
empresas. La decisión de invertir es una de las más compleja que tienen que
tomar las empresas, supone una evaluación de los negocios disponible así como
de su potencial de beneficio dado un nivel de riesgo, es decir la posibilidad de
que se pueda incurrir en perdidas y no poder recuperar los capitales
invertidos.En este informe vamos a abordar la evaluación de inversiones
empleando métodos sofisticados que toman el valor del dinero en el tiempo
como el VAN y el TIR. Luego el modelo de valoración de activos que
consideran la rentabilidad exigida de una cartera de inversión considerando el
nivel de riesgo. El rendimiento esperado se estima a partir de la tasa libre de
riesgo y el coeficiente Beta que mide el nivel de riesgo de una inversión. La
cartera eficiente de inversión se basa en un conjunto de inversiones con riesgo
diversificado que superen la rentabilidad esperada para la determinación de la
frontera eficiente de inversiones. El informe se basa en fuentes bibliográficas
variadas y en la experiencia del cursante en el área de evaluación de proyectos.
Palabras claves: rentabilidad, inversión, riesgo, activos, cartera
2
INTRODUCCION
El fascinante campo de las evaluación de inversiones, es considerado como una
de las aéreas donde se refleja con más intensidad, el impacto de las decisiones
que toman los directivos en las empresas. La decisión de invertir es una de las
más compleja que tienen que tomar las empresas, supone una evaluación de los
negocios disponible así como de su potencial de beneficio dado un nivel de
riesgo, es decir la posibilidad de que se pueda incurrir en perdidas y no poder
recuperar los capitales invertidos.
En este informe vamos a abordar la evaluación de inversiones empleando
métodos sofisticados que toman el valor del dinero en el tiempo y luego el
modelo de valoración de activos que consideran la rentabilidad exigida de una
cartera de inversión considerando el nivel de riesgo.
El infórmese basa en fuentes bibliográficas variadas y en la experiencia del
cursante en el área de evaluación de proyectos.
El objetivo general definido fue el “Analizar el los elementos financieros a
considerar cuando de evalúa una decisión de inversión.
Los dos objetivos específicos a alcanzar son: 1) Describir la utilidad del VAN y
el TIR para evaluar inversiones” 2) Mostrar los beneficios del modelo de
fijación de precio de activos” en la determinación de la frontera eficiente de
inversiones.
3
CAPITULO 1. EVALUACION DE INVERSIONES.
La gerencia empresarial cuando busca maximizar los beneficios recurre a las
inversiones para crear valor para los accionistas. Los accionistas se benefician
con la creación de valor que adopta la forma de rentabilidad más alta,
consistente en ingresos por dividendos cobrados y plusvalía por incremento en
el precio de las acciones. Por eso la primera gran pregunta de las finanzas
corporativas explora las condiciones bajo las cuales los nuevos proyectos de
inversión, como la construcción de una fábrica nueva o la modernización de una
existente añaden valor a la empresa. Analizando la utilidad del VAN y TIR para
la evaluación de inversiones se dará cumplimiento al primer objetivo específico
de informe.
Para crear valor para los accionistas, los directivos aplican un método para
evaluar proyectos de inversión para determinar su factibilidad. La evaluación de
proyectos implica la estimación por adelantado de los costos asociados al
proyecto, comparándolo con el flujo de ingresos esperados. Para hacerlo se
emplea el flujo de efectivo descontado, método que toma en cuenta tanto el
valor del dinero en el tiempo como el riesgo de la inversión.
Valor actual neto y flujo de efectivo descontado
El principio básico del valor del dinero en el tiempo es que un dólar de hoy vale
más que un dólar de mañana. Porque un dólar hoy, se puede colocar en el banco
ganando intereses y tener más de un dólar mañana. El principio básico del
riesgo es que un dólar en mano tiene más valor para un inversor que un dólar a
futuro. En el contexto de la evaluación de inversiones los costos se pueden
asumir como ciertos, pero los ingresos solo se pueden pronosticar. Por muchas
razones el flujo puede que de efectivo real puede no cumplir con las
proyecciones. La gerencia empresarial debe considerar no solo la rentabilidad
sino el riesgo cuando se toma en consideración la decisión de invertir en un
proyecto. La herramienta más empleada para evaluar inversiones es la del Valor
Actual Neto (VAN), que permite convertir una corriente de flujo de efectivo
generada a lo largo del tiempo, en una sola cifra expresada en unidades
monetarias (Bs, $,) hoy.
Se observa que el valor del proyecto para una empresa en unidades monetarias
de hoy es igual a los costos iniciales del proyecto (cifra negativa) másla
corriente de ingresos netos descontados a la tasa de descuento dada un
aceptado y una rentabilidad exigida. La regla para tomar decisiones que si el
4
VAN calculado es positivo la inversión agrega valor a la empresa por lo que
debe ser aceptado. Si el VAN es negativo la inversión no agrega valor a la
empresa y por tanto debe ser rechazado.
El tipo de descuento es un factor crítico usado para ajustar los flujos de caja al
tiempo y al riesgo. La tasa de descuento está formada por dos componentes:la
tasa “libre de riesgo” que es el rendimiento que la empresa podría obtener
colocando sus recursos en una cuenta bancaria completamente segura o
comprando bonos del tesoro. A esta tasa libre de riesgo se debe agregar una
“prima de riesgo” que es la cantidad adicional que la empresa debe pagar a los
inversionistas por el riesgo asociado al negocio. Una regla es que cuanto más
alto es el riesgo mayor será la rentabilidad exigida. Otra es que mientras mayor
es la tasa de descuento menor será el VAN calculado y menos atractivo será el
proyecto. En la figura 1.1 se pueden observar casos de empresas líderes con las
decisiones que tomaron para generar valores agregados en sus negocios.
NEGOCIOS EMPRESA
Diseño del empaque El vodka Absolut se ha convertido en un
objeto de colección por el diseño de sus
botellas no sólo para los amantes de la
bebida sino que también para los del arte.
Introducir un nuevo producto Apple sus productos resaltan por presentar
modificaciones constantes, por ser
perfectibles y por buscar satisfacer cada
día más las necesidades de sus
consumidores. No es de extrañar que
Steve Jobshaya patentado más de 300
inventos.
Introducir variaciones de productos
existentes
Ford introduce el Sierra
Apoyarse en el marketing para
crear diferenciación de productos
Coca cola usa el slogan “El sabor de la
vida”
Explotar tecnología nueva Yahoo usa banner en la web.
Calidad en el servicio y atención McDonald’s tiene como principal
mandamiento para sus empleados el
atender con una sonrisa, mientras que en
Starbucks te preguntan tu nombre.
Fig. 1.1 Empresas que crean un VAN positivo. Elaboración propia
5
El valor del dinero en el tiempo. Caso de un periodo único.
Acá se supone que Juan Brown, terrateniente está tratando de vender uno
terrenos en frente a un lago en Aruba por lo que le están ofreciendo 10.000$.
Cuando estaba a punto de cerrar el trato lo llamo otro comprador y le ofreció
11.424 $, con la condición de que se lo pagara dentro de un año. El pago está
garantizado y no hay riesgo en su incumplimiento. Juan llama a su analista
financiero, quien le informa que si acepta la primera de las propuestas, puede
invertir esa cantidad en un banco al 12%, por lo que a final de año Juan tendría
11.200$. Dado que esa cantidad es inferior a los 11.424$ que ofrece el segundo
comprador. La analista alienta a Juan a que acepte la segunda oferta.
El razonamiento del analista financiero se basa en un concepto crítico de las
finanzas corporativas, ha usado el concepto de valor futuro que es valor de una
suma después de invertirla durante uno o más periodos. En el ejemplo el valor
futuro de 10.000 $ a interés compuesto es 11.200 $.
Ahora se le da la vuelta al análisis y lo observaremos desde la perspectiva del
llamado “valor actual” de una suma futura. Este valor se puede determinar
contestando la siguiente pregunta ¿Cuánto dinero debe colocar Juan en el banco
hoy para tener 11.424$ el año que viene considerando un interés del 12%?
VA*1.12=$11.424 o lo que es lo mismo VA=--------------=$10.200
Generalizando tenemos
VA=C
(1+r)
Donde C1 es el efectivo recibido al final del periodo único y r es el tipo
adecuado de interés o tasa de descuento a aplicar. El análisis dice en el ejemplo
que el pago futuro de 11.414$ hecho por el segundo comprador el año que
viene, tiene un valor actual de 10.200$ este año. Como esta cifra es mayor que
la oferta de 10.000$ del primer comprador, el análisis le informa a Juan que le
conviene aceptar la segunda oferta al menos si el tipo de descuento del 12%.
6
Valor actual neto sin riesgo
Bob Zubillaga de la empresa inmobiliaria “Real estate dc” tiene un negocio de
un terreno que vale 85.000$ que sería la inversión inicial. Bob espera revenderlo
por 91.000$ el año que viene que sería el pago futuro. La operación tiene un
beneficio seguro de 6.000$ por lo que parece ser una buena inversión. ¿Pero lo
es en realidad? Si la tasa de descuento libre de riesgo es del 10%, que es la tasa
de interés que ofrece el banco. Usando la ecuación el valor actual del terreno
con un valor futuro de 91.000$ seria:
VALORACTUAL=$91.000
1.10 =$87.727
Con esta información aplicamos la formula VAN
$2.273=$85.000 +$91.000
1.10
Dado que el VAN es negativo Bob Zubillaga recomendara no comprar el
terreno. En este ejemplo se puede escribir la ecuación del VAN así:
VAN=-Inversion+VA
Valor actual en proyectos con periodos múltiples con riesgo.
TECINTER está considerando la construcción de una nueva planta de
fabricación con un costo inicial de 100 millones de $. Las proyecciones del
mercado indican que la planta generara un flujo de caja de 10 $ millones, el
primer año, 20 millones para el segundo año, 30 millones para el tercer año, 40
millones para el cuarto y 50 millones para el quinto año. La empresa invierte
100 millones y recibe 150 millones en 5 años, ¿Sera acaso un buen negocio?
Si se analiza un poco más las perspectivas resultan menos optimistas. Para
empezar TECINTER, se enfrenta a un problema de valor de dinero en el tiempo
porque una buena parte de los flujos de caja previstos llegan en los últimos 3
años del proyecto. Lo cual es poco en comparación con el riesgo de construir
una nueva planta. Conocemos que el sector de los semiconductores es altamente
7
cíclico, por lo que en épocas malas el flujo de caja podría ser sustancialmente
menor. Además en el sector suele existir exceso de capacidad de fabricación, y
precios deprimidos por el exceso de oferta, por lo que incluso en épocas de
bonanza la empresa puede no alcanzar los flujos de caja esperados.
Para calcular el VAN del proyecto usando la ecuación, con bajo el supuesto de
una tasa libre de riesgo del 10% tendríamos empleando la función financiera
de EXCEL el resultado sería:
AÑO FNC
0 -100
1 10
2 20
3 30
4 40
5 50
VAN $ 5.93
Como este VAN es positivo TECINTER, debe construir una nueva planta y de
paso añadiría más de $5.93 millones de valor a la empresa.
Pero si se agrega el riesgo se verá como el cálculo puede variar. Como primer
paso para justificar el riesgo podemos asumir una tasa de descuento más alta,
digamos del 15%. Se supone que un inversor en un proyecto arriesgado pediría
una “prima por riesgo” más alta que esté por encima del tipo libre de todo
riesgo que podría ganar colocando su dinero en un banco o en bonos del tesoro
a corto plazo. En este caso la tasa libre de riesgo es del 10%, la prima de riesgo
es del 5%, la tasa de descuento supuesta es del 15%. El cálculo del VAN es el
siguiente usando la función financiera de Excel. El resultado da un VAN
negativo de $7.59 millones.
8
AÑO FNC
0 -100
1 10
2 20
3 30
4 40
5 50
VAN $ -7,59
Inmediatamente se ve que esta inversión no sería rentable para la empresa ya
que perdería $7.59 millones en su valor dado el VAN negativo calculado. Este
cálculo destaca la importancia de elegir la tasa de descuento apropiada para
hacer la valoración de un proyecto.
La tasa interna de retorno
El valor actual neto mide agregación de valor de una inversión a la empresa. La
TIR por su parte mide rentabilidad de una inversión en términos porcentuales.
Si la tasa de rentabilidad está por encima del mínimoexigido se acepta la
inversión. Si los proyectos son excluyentes se acepta el que tenga mayor
rentabilidad.
En términos matemáticos la TIR se representa con este modelo, sería el valor
rque hace cero el valor actual de una inversión.
0=C
(1+r)
En el ejemplo de TECINTER con la inversión inicial y el flujo de caja que
genera el proyecto, se podría hacer el cálculo empleando las formulas
financieras de Excel. Los resultados indican que la TIR calculada es del 12%
por encima de la tasa de descuento del 10% lo que hace factible la realización
de la inversión.
AÑO FNC
0 -100
9
1 10
2 20
3 30
4 40
5 50
TIR 12%
VAN Bs. 5,93
La elección de la tasa de descuento.
Elegir una tasa de descuento es una de las tareas más difíciles que tienen los
ejecutivos financieros, en el ejemplo anterior se ha adivinado cual podría ser,
pero en lugar del 15% podría ser el 20, el 25 e incluso el 30%. ¿Entonces como
se calcula la verdadera tasa de descuento? La forma máscomún es usar una de
las herramientas más importantes y poderosas de las finanzas, llamada por sus
siglas en ingles CAPM “capital asset pricing model” en castellano traducido
como “método de valoración de activos de capital” que se tratara en el próximo
capítulo.
10
CAPITULO II. EL CAPM. LA PERSPECTIVA DEL INVERSOR
Cuando el problema de las inversiones se mira desde la perspectiva del inversor
las finanzas corporativas se vuelven considerablemente más interesantes,
porque no se trata solo de directivos que intentan crear una empresa rentable,
sino que aparecen los bancos de inversión, los gestores de cartera y los
planificadores financieros con la intención de ganar dinero en los mercados de
valores y bonos. En este capítulo se dará cumplimiento al segundo objetivo
específico del informe.
La interrogante que se hacen es si la inversión que se propone la empresa va a
aumentar o disminuir la cotización de sus acciones. Dicho de otro modo, si los
inversores creen que el proyecto añadirá valor a la empresa generando un VAN
positivo, sus acciones deberían subir de precio. Pero si los inversores creen que
el proyecto le restara valor a la empresa la cotización de sus acciones debería
bajar.
Uno de los principios más importantes de las finanzas corporativas, es que en
cualquier momento la cotización de las acciones de la empresa refleja una
expectativa de futuras ganancias. Por lo que si el mercado tiene noticias deun
proyecto de inversión que cambia las expectativas, la cotización de las acciones
debe cambiar.
La ecuación CAPM
La ecuación del modelo se describe a continuación. En el lado izquierdo se
tiene el rendimiento esperado de un valor, el cual es la tasa de descuento del
capital propio que estamos tratando de estimar. El modelo dice que este
rendimiento esperado (Re) se puede calcular añadiendo al tipo libre de riesgo
(Rf) a la diferencia entre el rendimiento esperado en el mercado (Rm) y la tasa
libre de riesgo (Rf) multiplicada por el valor beta
)del título.
ℜ=Rf +β ↔
(
RmRf
)
Rendimiento realizado.
La tasa libre de riesgo es lo que se puede ganar con certeza con un bono del
tesoro a corto plazo. Lo que hay que definir es como se define el riesgo entre el
rendimiento esperado de un valor y su rendimiento realizado. Para los
11
accionistas el rendimiento realizado en un año está formado por dos
componentes: 1) los dividendos generados por las acciones 2) la plusvalía o
minusvalía, es decir las ganancias por cambios en los precios de las acciones.
Si a principios de año se compraron 100 acciones de BISAX Inc. empresa
farmacéutica, por 37$ la acción. A lo largo del año pago un dividendo de 1.85$
por acción, o sea 185$ por sus 100 acciones. Además a final del año los títulos
valían en el mercado 40.33$ por acción. Esto representa una plusvalía neta de
333$ [100($40.33-$37)].
El rendimiento realizado de la inversión se calcula primeramente con el
rendimiento del dividendo el dividendo recibido entre el precio de compra: el
5%. Luego el porcentaje de plusvalía, que resulta el 9%. Esto quiere decir que el
rendimiento realizado total es del 14%.
El rendimiento esperado y la tasa libre de riesgo
El rendimiento esperado de un valor es lo que los inversores creen que será la
tasa de rentabilidad al final del periodo, normalmente un año. El rendimiento
esperado de un valor puede variar significativamente del valor realizado, lo que
constituye la esencia misma de concepto de riesgo.
Riesgo sistemático y riesgo no sistemático diversificable
La parte no prevista del riesgo, que resulta de las sorpresas es el verdadero
riesgo de cualquier inversión. Si se recibe lo que se espera no habría riesgo ni
incertidumbre. De todas manera hay diferencias importantes entre las distintas
clases de riesgo, por lo que es útil dividirlo en dos componentes “riesgo
sistemático” y el resto denominado “no sistemático” o “diversificable”
El “riesgo sistemático” afecta a muchos elementos del activo en mayor o menor
grado, por ejemplo la incertidumbre sobre las condiciones económicas del país,
el PIB, la inflación, la tasa de interés, devaluación de la moneda son un ejemplo
de este tipo de riesgo. Un aumento en el nivel general de precios afecta a los
salarios y los costos de los suministros de las empresas. La naturaleza de este
riesgo es principalmente cíclica, cuando hay expansión económica los
rendimientos del mercado son considerablemente más altos que los obtenidos
durante los periodos de recesión.
El riesgo no sistemático representa la parte no prevista del rendimiento de una
empresa como resultado de eventos no relacionados con el rendimiento general
12
del mercado. Es un riesgo que afecta a un solo elemento del activo o a un
pequeño grupo de esos elementos. Una huelga en un PDVSA puede afectar solo
a esta o a otras pocas más, pero es improbable que afecte a los mercados
mundiales de petróleo. Del mismo modo una empresa de biotecnología puede
encontrarse ante el riesgo de ensayos fallidos sobre una medicina nueva, una
empresa tecnológica con juicios en tribunales por el uso de patentes, y de esta
manera correr el riesgo de perder cuotas de mercado y utilidades con la
competencia de otras empresas del sector.
La distinción entre el riesgo sistemático y el no sistemático no están exacta
como se presenta, porque incluso la información más pequeña sobre una
empresa puede afectar a la economía. Dividiendo el riesgo en sus dos partes se
llega a dos puntos importantes 1) el riesgo no sistemático se puede diversificar
repartiéndolo dentro de una cartera y 2) el riesgo sistemático se puede medir
con el “valor beta” usando el CAPM o método de valoración del coste de los
recursos propios.
El valor Beta
Si la cotización de las acciones de una empresa sube más rápido que el mercado
activo en los momentos buenos y caen con más rapidez que el mercado en los
momentos malos, se dice que esa empresa es más arriesgada que una inversión
en el mercado activo. Estas empresas tienen un Beta mayor a uno. Los Betas por
encima de uno representan un riesgo sistemático alto y reflejan una mayor
volatilidad que el mercado. Esta descripción encaja en empresas pertenecientes
a sectores muy cíclicos por ejemplo las tecnológicas.
Si la cotización de las acciones sube más lentamente que el mercado en los
buenos momentos y cae más lentamente en los momentos malos, la empresa es
menos arriesgada que una inversión en el mercado activo, y tendrá un valor
Beta menor que 1, lo que representa un riesgo sistemático bajo. Esta descripción
es válida para sectores de consumo masivo como alimentos, medicinas y
bebidas.
Supongamos que los analistas financieros consideran cuatro posibles estados de
la economía: depresión, recesión, expansión y auge. En consideramos comprar
acciones de dos empresas diferentes TECINTER Y BISAX. Dado que la
primera opera en el sector de los semiconductores, que es altamente cíclico, se
espera que sus rendimientos sigan a la economía muy de cerca. La segunda
13
dado que ofrece productos que los consumidores necesitan tanto en tiempos
buenos como en los malos, se espera que sus rendimientos sean menos cíclicos.
En los cuatro escenarios simulados por los analistas, los rendimientos simulados
son los siguiente:
Rendimientos esperados
Tecinter %
Rendimientos esperados
Brisax %
Depresión -20 6
Recesión 12 25
Expansión 38 -12
Auge 55 10
Tabla 2.4 Rendimientos esperados Fuente: elaboración propia
Se observa que los rendimientos realizados por TECINTER tienden a ser más
altos en los momentos buenos y más bajos en los momentos malos. De segundo
los rendimientos realizados de las dos empresas se mueven a veces en sentidos
diferentes. Estos dos efectos volatilidad y movimientos conjuntos reciben el
nombre de varianza y covarianza en el lenguaje estadístico.
Una relación positiva o covarianza entre los dos valores aumenta la varianza de
toda la cartera, lo que no es recomendable si lo que se pretende es diversificar el
riesgo. Por lo contrario, una relación negativa o covarianza entre los dos valores
disminuye la varianza y el riesgo de toda la cartera.
Si uno de los valores tiende a subir cuando el otro baja o viceversa, ambos
valores se compensan mutuamente. Este efecto en finanzas se llama
“cobertura” y el riesgo de toda la cartera será menor. Pero si los dos valores
suben y bajan conjuntamente no hay ninguna cobertura y el riesgo de toda la
cartera será mayor.
El concepto de “cobertura” es importante porque es una forma de diversificar el
riesgo no sistemático en el mercado bursátil será el invertir en valores de
empresas pertenecientes a diversos sectores, si un inversor tiene acciones en
Intec y en otra empresa del mismo sector de semiconductores, normalmente
estará menos diversificado que otro inversor que tenga acciones además del
semiconductores en otro sector como seria el farmacéutico.
14
Lo que se quiere destacar es que la varianza de una cartera depende tanto de las
varianza de los valores individuales como de la covarianza entre ambos valores.
Por lo que para buscar una cartera diversificada, al inversor le interesa la
contribución de cada valor al rendimiento esperado y al riesgo de la cartera, o
sea el riesgo sistemático.
LA CARTERA ÓPTIMA DEL INVERSOR INDIVIDUAL.
En cualquier inversión hay una compensación entre el rendimiento esperado y
el posible riesgo de no obtener ese rendimiento. Los inversores elegirán alguna
combinación de activos que maximice los rendimientos esperados con un nivel
de riesgo dado.
El conjunto de oportunidades
El primer paso para construir una cartera óptima es definir el conjunto de
oportunidades o conjunto viable de inversiones que se pueden elegir. La figura
9.6 ilustra las diferentes combinaciones de valores que pueden hacer los
inversores dentro de un conjunto de oportunidades que solo tienen dos
empresas. El eje vertical representa los rendimientos esperados, el eje
horizontal muestra la desviación típica del rendimiento de la cartera, que es el
indicador de riesgo, representado por la raíz cuadrada de la varianza de la
cartera que es relativamente menos arriesgada. Tiene un rendimiento esperado
del 5.5% y un indicador colateral de riesgo del 11.5%. El punto B en cambio
muestra una cartera de la empresa más arriesgada, representada por una
desviación típica mucho más alta del 26% y un rendimiento esperado de más
del triple de la otra empresa.
La línea recta entre el punto A y B supone que la correlación entre ambas
empresas es exactamente igual a 1, lo que dice que los rendimientos de ambas
empresa se mueven juntos. La curva por encima de la línea recta refleja el
supuesto de una correlación negativa entre los rendimientos de ambas empresas.
este valor negativo significa que los rendimientos entre estas dos empresas
tienden a moverse en direcciones opuestas, por lo que habrá efecto
diversificación y una oportunidad de cobertura. Los puntos de la curva ofrecen
las mejores combinaciones de rendimiento esperado a cambio de un riesgo
previsto, es la llamada frontera eficiente de esta cartera.
15
El efecto de diversificación y la frontera eficiente
El efecto diversificación puede ser visto al comparar los puntos 1 y 4 de la
figura. En ambos casos representan una cartera formada por 90% y 10% de cada
empresa, sin embargo el punto 1 supone un efecto diversificación y el punto 4
no.
En la curva hay un punto marcado VM para indicar varianza mínima. Esto
representa la combinación de dos valores con el más bajo riesgo posible.
Curiosamente el punto VM está a la izquierda del punto A y entre estos dos
puntos la línea se curvea hacia atrás, lo que quiere decir que DSta es un valor de
riesgo muy bajo y un inversor puede incluso reducirlo más vendiendo parte del
mismo y sustituyéndolo por el riesgo mayor que supone Sutech. Acá se muestra
el efecto diversificación en todo su esplendor y es una de las conclusiones más
importantes en las finanzas corporativas.
Por último se espera que ningún inversor querría tener una cartera con un riesgo
esperado menor que la varianza mínima. Ningún inversor elegiría tener la
cartera 1 aunque es viable y está en la frontera eficiente. De tales carteras se
dice que están dominadas por la cartera de varianza mínima o sea, aunque toda
la curva que va de DSta hasta Sutech se llama “conjunto viable” solo la parte de
la curva que va de VM hasta STech constituye la verdadera frontera eficiente.
Además del concepto de construcción de la cartera optima, hay que comprender
el concepto llamado “principio de separación”, el cual dice que la decisión de
invertir es en realidad un proceso de dos pasos en el que el inversor calcula
primero el conjunto eficiente de activos arriesgados y luego combina una
cartera especial de esos activos con otros libres de riesgo (bonos del tesoro)
basándose en su nivel de aversión al riesgo.
16
CONCLUSIONES
En un entorno de recursos limitados las empresas debe aplicar criterios que
permitan agregar valor a sus negocios por lo que deben aplicar instrumentos
sofisticados para evaluar sus inversiones, el VAN permite tomar decisiones para
medir los beneficios de un proyecto con capacidad de un agregación de valor a
la empresa, solo se aceptaran aquellas inversiones que tengan un VAN positivo,
considerando un nivel de riesgo, expresado en la tasa de descuento aceptada.
La TIR mide la rentabilidad esperada de una inversión medida en términos
porcentuales, solamente se aceptaran proyectos que superen la rentabilidad
mínima exigida. De esta manera se da cumplimiento en el capítulo 1 al primer
objetivo del informe “Describir la utilidad del VAN y el TIR para evaluar
inversiones”
El “modelo de fijación de precio de los activos” se vale del coeficiente beta para
vincular el riesgo de mercado de un activo con su rendimiento requerido. El
beta mide el riesgo no sistemático o diversificable expresando el grado de
respuesta del riesgo de un activo ante cualquier cambio en los rendimientos del
mercado. La tasa libre de riesgo mide el rendimiento esperado seguro de una
inversión. El rendimiento de los bonos del tesoro se tiene como referencia para
su cálculo. Las empresas con Beta mayor que 1 son considerada muy riesgosas,
la que lo tienen menor que 1 son consideradas muy riesgosas. La diversificación
de inversiones supone la creación de una cartera con riesgos y rentabilidad
diferenciados, esto se conoce como “cobertura”. A mayor riesgo mayor será la
rentabilidad exigida, menor riesgo supone una menor rentabilidad exigida. La
construcción de una cartera optima de inversiones exige comprender el efecto
diversificación entre activos con riesgo alto y activos con riesgo bajo. Ningún
inversor le gustaría tener una cartera con rendimiento esperado menor a la
varianza mínima. De esta manera se da cumplimento al segundo objetivo
especifico “Mostrar los beneficios del “modelo de fijación de precio de activos”
en la determinación de la frontera eficiente de inversiones”.
Con el cumplimiento de los dos objetivos específicos se da cumplimiento al
objetivo general de “Analizar los elementos financieros a considerar cuando se
evalúa una decisión de inversión”
17
BIBLIOGRAFIA CONSULTADA
GITMAN Lawrence. Administración Financiera Básica. Harla 4 edición 2010.
NASSIR Sapag Chain. Proyectos de inversión. Formulación y Evaluación.
Person de México 2010
NAVARRO Peter. Lo que saben los mejores MBA. Profit editorial 2009
VAN HORNE James. Fundamentos de Administración Financiera. Prentice Hall
2010
-
18

Hazle saber al autor que aprecias su trabajo

Tu opinión vale, comenta aquíOculta los comentarios

Comentarios

comentarios

Compártelo con tu mundo

Cita esta página
Carrasquero R Domingo. (2017, febrero 9). Evaluación de Inversiones. Recuperado de https://www.gestiopolis.com/evaluacion-de-inversiones/
Carrasquero R, Domingo. "Evaluación de Inversiones". GestioPolis. 9 febrero 2017. Web. <https://www.gestiopolis.com/evaluacion-de-inversiones/>.
Carrasquero R, Domingo. "Evaluación de Inversiones". GestioPolis. febrero 9, 2017. Consultado el 21 de Noviembre de 2017. https://www.gestiopolis.com/evaluacion-de-inversiones/.
Carrasquero R, Domingo. Evaluación de Inversiones [en línea]. <https://www.gestiopolis.com/evaluacion-de-inversiones/> [Citado el 21 de Noviembre de 2017].
Copiar
Imagen del encabezado cortesía de 68751915@N05 en Flickr