Qué es una distribución de probabilidad, una variable aleatoria y un valor esperado?

Clasificado en: Evaluación de proyectos 

09-2002

Una distribución de probabilidad la podemos concebir como una distribución teórica de frecuencia, es decir, es una distribución que describe como se espera que varíen los resultados. Dado que esta clase de distribuciones se ocupan de las expectativas son modelos de gran utilidad para hacer inferencias y tomar decisiones en condiciones de incertidumbre.
 
Variable aleatoria.
 
Es aquella que asume diferentes valores a consecuencia de los resultados de un experimento aleatorio.
 
Estas variables pueden ser discretas o continuas. Si se permite que una variable aleatoria adopte sólo un número limitado de valores, se le llama variable aleatoria discreta. Por el contrario, si se le permite asumir cualquier valor dentro de determinados límites, recibe el nombre de variable aleatoria continua.
 
El Valor Esperado.
 
El valor esperado es un concepto fundamental en el estudio de las distribuciones de probabilidad. Desde hace muchos años este concepto ha sido aplicado ampliamente en el negocio de seguros y en los últimos veinte años ha sido aplicado por otros profesionales que casi siempre toman decisiones en condiciones de incertidumbre.
 
Para obtener el valor esperado de una variable aleatoria discreta, multiplicamos cada valor que ésta puede asumir por la probabilidad de ocurrencia de ese valor y luego sumamos los productos. Es un promedio ponderado de los resultados que se esperan en el futuro.
 

Comentarios
comments powered by Disqus

Nuevas publicaciones

⇐ Hazte Fan en Facebook
⇐ Síguenos en Twitter
⇐ Agréganos en Google +
⇐ Suscríbete vía Email
"Si tú tienes una manzana y yo tengo una manzana e intercambiamos las manzanas, entonces tanto tú como yo seguiremos teniendo una manzana. Pero si tú tienes una idea y yo tengo una idea e intercambiamos ideas, entonces ambos tendremos dos ideas"
George Bernard Shaw
Comparte conocimiento
Contenidos publicados con licencia CC BY-NC-SA 3.0 a excepción de los casos en los que se indican derechos de autor específicos. Sugerimos contactar a los autores al usar material públicamente.