Conceptos Básicos de Control Estadístico de Procesos

Luis Segura
Objetivos

- Entender la aplicación y forma de uso de las herramientas estadísticas necesarias para lograr un adecuado control de los procesos.
- Comprender los conceptos estadísticos básicos requeridos en el documento SPC (QS-9000. 3ra. Ed.)

Detección → Tolera Desperdicios

Prevención → Evita desperdicios

Las Técnicas Estadísticas son herramientas de prevención
Definiciones

El proceso: Combinación de entradas, recursos, salidas, incluyendo al proceso en sí y sus clientes.
Información del desempeño del proceso: se estudia las salidas, el proceso en sí, sus variaciones, sus características, su comportamiento. Se definen los valores objetivos y las acciones para el ajuste.
Acciones sobre el proceso: enfoque en la prevención en monitoreo constante.
Acciones en la salida: costosas y temporales, enfocadas a detectar y corregir.

Design of Experiments
Definiciones Estadísticas

- **Variable.** Cantidad o carácter sujeto a variación.
 - Cualitativa. Cada individuo pertenece a una categoría mutuamente excluyente.
 - Cuantitativa. Representa un dato numérico.
 - Discreta. Valores clasificados en categorías específicas.
 - Continua. Valores que se encuentran dentro de una escala o rango.

- **Rango.** \((X_2 - X_1) \)

- **Población** (N). Todos los valores posibles que puede tomar una variable dentro de un rango.

- **Muestra** (n). Una parte de la población, la misma que puede representar la variación de esta.
Fuentes de Variación (6M)

- Mano de Obra
- Maquinaria
- Materiales
- Métodos
- Medición
- Medio Ambiente
1. Las piezas varían unas de otras

2. Si se toman un número de muestras de un proceso estable y se apilan...

3. ...forman una distribución de probabilidad

4. Si el proceso es estable esa distribución refleja el comportamiento del proceso
Elementos de una distribución

Las distribuciones se diferencian por:

- **Ubicación (Media)**: variación respecto al valor típico.
- **Forma**: variación sesgada.
- **Dispersión**: variación grande entre el máximo y el mínimo valor.
Estabilidad es la variación total en las piezas obtenidas en diferentes períodos de tiempo.
Causas comunes de variación

Cuando sólo las causas comunes de variación están presentes, la salida de un proceso forma una distribución que es estable en el tiempo y por tanto, predecible.
Causas comunes de variación

- Fallas en el Sistema
- Variabilidad inherente al proceso
- Generalmente se trata de un gran número de pequeñas causas de variación
Causas especiales de variación

Cuando en un proceso están presentes también causas especiales de variación, la salida del proceso no es estable en el tiempo.
Causas especiales de variación

- **Variabilidad externa**
- **No son parte del proceso todo el tiempo. Aparecen debido a circunstancias específicas**
- **Problemas esporádicos**
Definiciones

- **Causas comunes de variación.**
 Fuentes de variación que tienen una distribución normal, estable y repetitiva en el tiempo. El proceso es predecible. Estas causas se eliminan tomando acción en el sistema (Materiales, equipos, instrumentos de medición, etc.).

- **Causas especiales de variación.**
 No siempre están presentes en el proceso pero que este se puede ver alterado mayormente. El proceso se vuelve impredecible y causa efectos negativos. Se eliminan tomando acción local en el proceso.

- **Variación inherente al Proceso.**
 Parte de la variación debida a causas comunes. Se estima de las cartas de control de la desviación estándar del proceso.

- **Variación Total del proceso.**
 Variación debida a ambas, causas comunes y especiales de variación. Se estima de la desviación estándar de la muestra.
Definiciones

- Proceso fuera de control estadístico.
- Presencia de causas especiales
- Proceso Inestable

- Proceso en control estadístico.
- Causas especiales eliminadas
- Proceso Estable
Capacidad de Proceso

Proceso en control, pero no capaz de cumplir con las especificaciones. Excesiva variación de causas comunes

Proceso en control y capaz de cumplir especificaciones
Qué es capacidad de Proceso....?

Una vez que el proceso está bajo control, podemos establecer ciertos requisitos a través de varios índices.
CP, Cpk, Pp, Ppk
que ilustran la medida con que el proceso cumple con las especificaciones.

\[\text{Especificación} = Vn^+ (Lc_i - Vn) \]
\[-(Vn - Lci) \]

\[Lc = \bar{X} \pm 3\sigma \]

\[Cp = \frac{\text{Tolerancia}}{\text{Variación}} = \frac{Le_i - Le_i}{Lc_i - Lc_i} \]
Definiciones

Control de Procesos.
Se dice que un proceso está bajo control cuando las únicas fuentes de variación son causas comunes. Se obtiene a través de decisiones para mantener al proceso dentro de los límites establecidos, mediante reacciones requeridas, y eliminando las causas especiales detectadas en el control.

Capacidad de proceso.
Representa el mejor estado de desempeño del proceso, obtenido cuando únicamente están actuando causas comunes de variación, es decir la habilidad de un proceso para cumplir especificaciones de un cliente en forma repetitiva y constante.

Se debe calcular la capacidad de proceso (Cpk) luego de que el proceso se encuentre bajo Control Estadístico.
Definiciones

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>Tipo 1 Ideal</td>
<td>Tipo 3 Causas especiales</td>
</tr>
<tr>
<td>No</td>
<td>Tipo 2 Causas Comunes</td>
<td>Tipo 4 Ambas causas</td>
</tr>
</tbody>
</table>

El proceso cumple con las especificaciones ...? (Es capaz?)

El proceso está en control?
Distribución de Probabilidad

Luis Segura
Desviación Estándar

Representa o cuantifica la variación del proceso o la falta de uniformidad de este.

\[\sigma = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n}} \]

\[n = \text{Número de observaciones} \]
Desviación Estándar

Porcentaje de la población que estará dentro de estos intervalos.
<table>
<thead>
<tr>
<th>σ</th>
<th>% de No defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>69.1%</td>
</tr>
<tr>
<td>3</td>
<td>93.32%</td>
</tr>
<tr>
<td>4</td>
<td>99.397%</td>
</tr>
<tr>
<td>5</td>
<td>99.9767%</td>
</tr>
<tr>
<td>6</td>
<td>99.99966%</td>
</tr>
</tbody>
</table>

6σ = 3.4 Partes por millón de defectuosos (PPM)
Límites de Control

Conclusión:

1. Los límites de control no dependen de las especificaciones.
2. La capacidad de Proceso no toma en cuenta el centramiento del proceso.
Límites de Control

Conclusión:
1. Los límites de control no dependen de las especificaciones.
2. La capacidad de Proceso no toma en cuenta el centramiento del proceso.
Distribución de Probabilidad Normal

% Proporción de producto fuera de especificaciones.

\[Z_s = \frac{L_e - \bar{X}}{\sigma} \iff p\%_{(sobre la especificación)} \]

\[Z_i = \frac{\bar{X} - L_{e_i}}{\sigma} \iff p\%_{(bajo la especificación)} \]
Distribución de Probabilidad Normal

Ejercicios
Unidad 1
Capacidad de Proceso (Cpk)

Luis Segura
Qué es capacidad de proceso....?

Una vez que el proceso está bajo control, podemos establecer ciertos requisitos a través de varios índices.
CP, Cpk, Pp, Ppk
que ilustran la medida con que el proceso cumple con las especificaciones.

\[Cp = \frac{\text{Tolerancia}}{\text{Variación}} \]
Qué es capacidad de proceso....?

- **Cp** = Índice de Capacidad
 \[Cp = \frac{Lse - Lie}{6\sigma} \]

- **Pp** = Índice de desempeño
 \[Pp = \frac{Lse - Lie}{6s} \]

- **Cp_U** = Índice de capacidad superior
 \[Cp_U = \frac{Lse - \bar{X}}{3\sigma} \]

- **Cp_L** = Índice de capacidad inferior
 \[Cp_L = \frac{\bar{X} - Lie}{3\sigma} \]
Límites de Control

Proceso con los límites de control dentro de las especificaciones

Proceso con límites de control fuera de las especificaciones

Conclusión:
Los límites de control no dependen de las especificaciones
Cpk

\[C_{pk} = \text{Índice de Capacidad} \]

Considera el centramiento del proceso

El Mínimo entre

\[C_{pu} = \frac{L_{se} - \bar{X}}{3\sigma} \quad \text{y} \quad C_{pl} = \frac{\bar{X} - L_{ie}}{3\sigma} \]
Índice de Capacidad de Proceso

$C_{p_k} \leq 1.33$

El proceso no cumple los requerimientos, se debe tomar acción hasta obtener $C_{pk} > 1.33$

$1.33 \leq C_{p_k} \leq 1.67$

El proceso podría no cumplir el requerimiento. Necesita Mejoramiento

$C_{p_k} \geq 1.67$

El proceso cumple los requerimientos
Condiciones para el cálculo de Cpk

Se debe cumplir con las siguientes condiciones:

- Proceso estable (Sin causas especiales de variación).
- Las mediciones siguen una distribución normal.
- Especificaciones en base a requerimientos del cliente.
- Siempre existe variaciones en el muestreo.
- Emprender acciones para mejoramiento.
Razones para el cálculo de Cpk

- Por conocimiento total del proceso.
- Para fijar especificaciones por necesidad del cliente y/o por costos de fabricación.
- Reducir el producto defectuoso.
- Identificar costos ocultos o innecesarios.
- Identificar defectos en los equipos de proceso.
- Evitar el retrabajo de productos defectuosos fuera de especificaciones.
- Identificar fuentes de variación, cuantificarlas y proponer proyectos de mejora.
- Mejorar el producto a través de las especificaciones.
Porqué varía el valor del Cpk.

Debido a:
- El proceso de manufactura.
- Variación en el sistema de medición.
- Variación en los materiales.
- Inadecuada fijación de las especificaciones.

Las fuentes de variación pueden ser:
- Identificadas.
- Cuantificadas, y
- Eliminadas por prevención o control.
GRACIAS !!!

Luis Segura