Teoría de las muestras de trabajo

Autor: Dos Santos, Ma. Yolanda

Evaluación de proyectos y economía matemática

07-2004

Descargar Original

INTRODUCCIÓN

Una parte fundamental para realizar un estudio estadístico de cualquier tipo es obtener unos resultados confiables y que puedan ser aplicables. Como ya se comentó anteriormente, resulta casi imposible o impráctico llevar a cabo algunos estudios sobre toda una población, por lo que la solución es llevar a cabo el estudio basándose en un subconjunto de ésta denominada muestra.

Sin embargo, para que los estudios tengan la validez y confiabilidad buscada es necesario que tal subconjunto de datos, o muestra, posea algunas características específicas que permitan, al final, generalizar los resultados hacia la población en total. Esas características tienen que ver principalmente con el tamaño de la muestra y con la manera de obtenerla.

En las siguientes secciones de esta unidad lo comentaremos.

La Alumna 
 
UNIDAD 1. TEORÍA DE MUESTRAS

En este capítulo se resume la Teoría de Muestras estadística, la cual trata el concepto de estudiar una población desconocida tomándole muestras, y a través del estudio de las mismas poder hacer inferencias acerca de toda la población. Primero se analiza el caso del muestreo aleatorio simple y estratificado, mostrando el manejo de una tabla de números aleatorios. Luego se ven los tipos no-aleatorios en el muestreo y se discute acerca de las ventajas y desventajas de cada uno de los métodos. Se explican los métodos usados en Bioquímica para lograr que las muestras extraídas a los pacientes cumplan los requisitos de aleatoriedad, aunque sea aproximadamente. Lo mismo para el caso de la industria Farmacéutica y para las simulaciones en los muestreos de mercadeo, usadas en el comercio en general. De manera tal de poder aplicar luego los modelos estadísticos que exigen tal requisito. En la Tabla 3, del fascículo de las tablas, se presenta la Tabla Aleatoria, más conocida como: “Random Numbers”.

2. IMPORTANCIA DEL MUESTREO

A lo largo del curso se hacen uso de dos tipos de razonamiento: el deductivo y el inductivo. El primero está relacionado directamente con la teoría de probabilidad, que se aborda en la unidad 4, y que a partir de las características de la población se obtienen las posibles características de una muestra. El segundo tipo de razonamiento se relaciona con la denominada inferencia estadística: utilizar las características de un subconjunto de la población (la muestra) para hacer afirmaciones (inferir) sobre la población en general. Éste será el caso de esta unidad.

El muestro, como ya se mencionó, implica algo de incertidumbre que debe ser aceptada para poder realizar el trabajo, pues aparte de que estudiar una población resulta ser un trabajo en ocasiones demasiado grande, Wonnacott y Wonnacott ofrecen las siguientes razones extras:

· Recursos limitados. Es decir, no existen los recursos humanos, materiales o económicos para realizar el estudio sobre el total de la población. Es como cuando se compra un aparato, un automóvil usado (por ejemplo), que se prueba unos minutos (el encendido, una carrerita, etc.) para ver si funciona correctamente y luego se adquiere, pero no se espera a probarlo toda la vida (encendiéndolo y apagándolo o, simplemente, dejándolo encendida) antes de realizar la adquisición.

· Escasez. Es el caso en que se dispone de una sola muestra. Por ejemplo, para el estudio paleontológico de los dinosaurios (el T. Rex por ejemplo) sería muy bueno contar con, al menos, muchos restos fósiles y así realizar tales investigaciones; sin embargo, se cuenta sólo con una docena de esqueletos fosilizados (casi todos incompletos) de esas criaturas en todo el mundo.

· Pruebas destructivas. Es el caso en el que realizar el estudio sobre toda la población llevaría a la destrucción misma de la población. Por ejemplo, si se quisiese saber el conteo exacto de hemoglobina de una persona habría que extraerle toda la sangre.

· El muestreo puede ser más exacto. Esto es en el caso en el que el estudio sobre la población total puede causar errores por su tamaño o, en el caso de los censos, que sea necesario utilizar personal no lo suficientemente capacitado; mientras que, por otro lado, el estudio sobre una muestra podría ser realizada con menos personal pero más capacitado.

Ya que hemos mencionado la necesidad de realizar muestras, continuaremos con algunas características que deben tener éstas para que, realmente, se puedan realizar inferencias (inducciones) sobre ellas hacia la población total.

3. TAMAÑO DE LAS MUESTRAS

Para calcular el tamaño de una muestra hay que tomar en cuenta tres factores:

1. El porcentaje de confianza con el cual se quiere generalizar los datos desde la muestra hacia la población total.
2. El porcentaje de error que se pretende aceptar al momento de hacer la generalización.
3. El nivel de variabilidad que se calcula para comprobar la hipótesis.

• La confianza o el porcentaje de confianza es el porcentaje de seguridad que existe para generalizar los resultados obtenidos. Esto quiere decir que un porcentaje del 100% equivale a decir que no existe ninguna duda para generalizar tales resultados, pero también implica estudiar a la totalidad de los casos de la población.

Para evitar un costo muy alto para el estudio o debido a que en ocasiones llega a ser prácticamente imposible el estudio de todos los casos, entonces se busca un porcentaje de confianza menor. Comúnmente en las investigaciones sociales se busca un 95%.

• El error o porcentaje de error equivale a elegir una probabilidad de aceptar una hipótesis que sea falsa como si fuera verdadera, o la inversa: rechazar a hipótesis verdadera por considerarla falsa. Al igual que en el caso de la confianza, si se quiere eliminar el riesgo del error y considerarlo como 0%, entonces la muestra es del mismo tamaño que la población, por lo que conviene correr un cierto riesgo de equivocarse.

Comúnmente se aceptan entre el 4% y el 6% como error, tomando en cuenta de que no son complementarios la confianza y el error.

• La variabilidad es la probabilidad (o porcentaje) con el que se aceptó y se rechazó la hipótesis que se quiere investigar en alguna investigación anterior o en un ensayo previo a la investigación actual. El porcentaje con que se aceptó tal hipótesis se denomina variabilidad positiva y se denota por p, y el porcentaje con el que se rechazó se la hipótesis es la variabilidad negativa, denotada por q.

Hay que considerar que p y q son complementarios, es decir, que su suma es igual a la unidad: p+q=1. Además, cuando se habla de la máxima variabilidad, en el caso de no existir antecedentes sobre la investigación (no hay otras o no se pudo aplicar una prueba previa), entonces los valores de variabilidad es p=q=0.5.

Una vez que se han determinado estos tres factores, entonces se puede calcular el tamaño de la muestra como a continuación se expone.
Hablando de una población de alrededor de 10,000 casos, o mínimamente esa cantidad, podemos pensar en la manera de calcular el tamaño de la muestra a través de las siguientes fórmulas. Hay que mencionar que estas fórmulas se pueden aplicar de manera aceptable pensando en instrumentos que no incluyan preguntas abiertas y que sean un total de alrededor de 30.
Vamos a presentar dos fórmulas, siendo la primera la que se aplica en el caso de que no se conozca con precisión el tamaño de la población, y es:

(Para ver la totalidad de las gráficas, y formulas de este documento, es necesario utilizar la opción de descarga.)

Donde:

n   es el tamaño de la muestra;
Z   es el nivel de confianza;
p   es la variabilidad positiva;
q   es la variabilidad negativa;
E   es la precisión o error.

Hay que tomar nota de que debido a que la variabilidad y el error se pueden expresar por medio de porcentajes, hay que convertir todos esos valores a proporciones en el caso necesario.

También hay que tomar en cuenta que el nivel de confianza no es ni un porcentaje, ni la proporción que le correspondería, a pesar de que se expresa en términos de porcentajes. El nivel de confianza se obtiene a partir de la distribución normal estándar, pues la proporción correspondiente al porcentaje de confianza es el área simétrica bajo la curva normal que se toma como la confianza, y la intención es buscar el valor Z de la variable aleatoria que corresponda a tal área.
 
Por ejemplo: Si se quiere un porcentaje de confianza del 95%, entonces hay que considerar la proporción correspondiente, que es 0.95. Lo que se buscaría en seguida es el valor Z para la variable aleatoria z tal que el área simétrica bajo la curva normal desde -Z hasta Z sea igual a 0.95, es decir, P(-Z<z<Z)=0.95.

Utilizando las tablas, o la función DISTR.NORM.ESTAND.INV() del Excel, se puede calcular el valor de Z, que sería 1.96 (con una aproximación a dos decimales).

Esto quiere decir que P(-1.96<z<1.96)=0.95.
 
En el caso de que sí se conozca el tamaño de la población entonces se aplica la siguiente fórmula:

Donde

n   es el tamaño de la muestra;
Z   es el nivel de confianza;
p   es la variabilidad positiva;
q   es la variabilidad negativa;
N   es el tamaño de la población;
E   es la precisión o el error.

La ventaja sobre la primera fórmula es que al conocer exactamente el tamaño de la población, el tamaño de la muestra resulta con mayor precisión y se pueden incluso ahorrarse recursos y tiempo para la aplicación y desarrollo de una investigación.

Por ejemplo: En el Colegio de Bachilleres, una institución de nivel medio superior, se desea realizar una investigación sobre los alumnos inscritos en primer y segundo años, para lo cual se aplicará un cuestionario de manera aleatoria a una muestra, pues los recursos económicos y el tiempo para procesar la información resultaría insuficiente en el caso de aplicársele a la población estudiantil completa.

En primera instancia, suponiendo que no se conoce el tamaño exacto de la población, pero con la seguridad de que ésta se encuentra cerca a los diez millares, se aplicará la primera fórmula.

Se considerará una confianza del 95%, un porcentaje de error del 5% y la máxima variabilidad por no existir antecedentes en la institución sobre la investigación y porque no se puede aplicar una prueba previa.

Primero habrá que obtener el valor de Z de tal forma que la confianza sea del 95%, es decir, buscar un valor de Z tal que P(-Z<z<Z)=0.95. Utilizando las tablas o las funciones de Excel se pueden obtener, o viendo (en este caso) el ejemplo anterior, resulta que Z=1.96.

De esta manera se realiza la sustitución y se obtiene:

Esto quiere decir que el tamaño de la muestra es de 385 alumnos.
Supongamos ahora que sí se conoce el tamaño de la población estudiantil y es de 9,408, entonces se aplicará la segunda fórmula. Utilizando los mismos parámetros la sustitución queda como:

4. MUESTRAS PROBABILÍSTICAS

Las técnicas de muestreo probabilística son aquellas en las que se determina al azar los individuos que constituirán la muestra. Estas técnicas nos sirven cuando se desean generalizar los resultados que se obtienen a partir de la muestra hacia toda la población. Lo anterior se dice dado que se supone que el proceso aleatorio permitirá la obtención de una muestra representativa de la población.

Los muestreos probabilísticas pueden ser con o sin reemplazo.

Los muestreos con reemplazo son aquellos en los que una vez que ha sido seleccionado un individuo (y estudiado) se le toma en cuenta nuevamente al elegir el siguiente individuo a ser estudiado. En este caso cada una de las observaciones permanece independiente de las demás, pero con poblaciones pequeñas (un grupo de escuela de 30 alumnos, por ejemplo) tal procedimiento debe ser considerado ante la posibilidad de repetir observaciones. En el caso de poblaciones grandes no importa tal proceder, pues no afecta sustancialmente una repetición a las frecuencias relativas.

Los muestreos sin reemplazo son los que una vez que se ha tomado en cuenta un individuo para formar parte de la muestra, no se le vuelve a tomar en cuenta nuevamente. En este caso, y hablando específicamente para el caso de poblaciones pequeñas, las observaciones son dependientes entre sí, pues al no tomar en cuenta nuevamente el individuo se altera la probabilidad para la selección de otro individuo de la población. Para el caso de las poblaciones grandes (por ejemplo la población de un país) dicha probabilidad para la selección de un individuo se mantiene prácticamente igual, por lo que se puede decir que existe independencia en las observaciones.

Las técnicas de muestreo probabilística que mencionaremos serán básicamente tres: el aleatorio simple, el aleatorio estratificado y el sistemático.

4.2 Muestreo aleatorio simple

Podemos aquí mencionar que para el caso de que se estuviese estudiando un propoción dentro de la población (una elección de candidato, la aceptación o rechazo de una propuesta en una comunidad, la presencia o ausencia de una característica hereditaria), y el en caso de un muestreo aleatorio simple, la estimación que se puede hacer de la proporción buscada a partir de la proporción hallada en la muestra se obtiene mediante la construcción de un intervalo de confianza:

p = P ± tolerancia de la muestra

Donde p es la proporción buscada en la población y P es la proporción presente en la muestra.

Por otro lado, la tolerancia de la muestra está relacionada directamente con el nivel de confianza y se obtiene a partir de la distribución normal al igual que como se obtuvo para el cálculo del tamaño de las muestras. La representaremos con Z para obtener la fórmula:
 
4.3 Muestras aletorias

Para que las conclusiones de la teoría del muestreo y de la inferencia estadística sean validas, las muestras deben escogerse representativas de la población. El análisis de los métodos de muestreo y problemas relacionados se llaman el diseño del experimento.
 
4.2 Muestras no aleatorias

Cuando el método de extracción de las muestras no asegure a cada individuo de la población o del estrato, igual probabilidad de ser elegido, entonces la muestra obtenida no es aleatoria.

A veces, esto se hace por razones de practicidad en el sentido del costo o del tiempo. Si se desea tomar una muestra probabilística de la población argentina no parece razonable usar a cada individuo como unidad de muestreo. Lo mismo cuando se desea hacer un muestreo a los escolares de una provincia, es muy difícil empadronar a todos primero para luego sortear, y se tardaría demasiado para ubicarlos uno por uno hasta terminar el trabajo.

• En el muestreo de etapas múltiples se utiliza para el caso de grandes poblaciones humanas.

Acá, la unidad de muestreo en la primera etapa son los departamentos de cada provincia. Se los lista y se hace un primer sorteo para la selección. En una segunda etapa se distingue la población rural de la urbana, subdividiendo en fracciones (diferentes superficies con densidad de población semejante). Otra vez se sortea para elegir, y se continúa con otra división en radios dentro de las fracciones, segmentos dentro de radios, y así sucesivamente. La razón es repartir equitativamente el trabajo del encuestador.

• En el muestreo por conglomerados se eligen conjuntos donde naturalmente se agrupan los individuos. Es, por ejemplo, el caso de las escuelas para hacer un muestreo alumnos en el sistema educativo, o las facultades para los universitarios. Si se trata de estudiar las condiciones laborales de los empleados de comercio que trabajan en supermercados, primero se empadronan a los lugares naturales de trabajo (supermercados), y luego se sortea entre estos conglomerados para elegir a uno. Luego se entrevista a todos los empleados del supermercado elegido, y se acepta esto como una muestra representativa del sector.

• El muestreo sistemático se usa para el caso de sucesiones de elementos. Por ejemplo, el caso de las historias clínicas de pacientes, certificados de nacimiento, tarjetas de catálogo en una biblioteca, etc. Son los casos donde la información está en archivos y hay que trabajar con estos para obtenerlas. Se elige una cifra entera, razonable, tomando en cuenta el tamaño de la muestra y el de la población. Por ejemplo, hay que tomar una muestra de tamaño 25 de un archivo que contiene 488 fichas; luego, el cociente entre población y muestra es 488 /25, aproximadamente 19. Notar que si se elige 20 el tamaño muestral no llega a 25. Entonces, se cuentan las fichas y a llegar a la décimo novena se la extrae, se sigue hasta la número 38 que será la segunda escogida, y así sucesivamente hasta tener las 25 fichas necesarias. Es también el caso de los soldados que se numeran de 1 en adelante y cada 5 (u otro número cualquiera) dan un paso al frente. Es un método sencillo y rápido de selección.

Hay otros casos de muestreo no aleatorios de uso común. Como el de tomar una lista de nombres, cerrar los ojos y con la punta de un lápiz marcar a uno de ellos, para escogerlo. Son los casos de los programas de TV donde se toma la guía telefónica, se la abre en una página cualquiera y se escoge a uno de los números que figuran, para luego hacer un llamado con premio. En los juegos infantiles se hace una ronda con los participantes, se vendan los ojos del que va a elegir, se le hace dar varias vueltas con los ojos vendados para que marque a alguno. Todos los casos vistos tienen una característica común: los individuos de la población no son equiprobables. 
 
4.4 Números Aletoricos

Una forma para obtener una muestra representativa es mediante el muestreo aleatorio, de acuerdo con el cual, cada miembro de la población tiene la misma probabilidad de ser incluido en la muestra. Un método para lograrlo es asignarle a cada uno un número, escribir cada número en una papeleta, y realizar en una urna un soporte justo en ella. Un método alternativo consiste en recurrir una tabla de números aleatorios.
 
4.5 Sistemático

Es análogo al anterior, aunque resulta más cómoda la elección de los elementos. Si hemos de elegir 40 elementos de un grupo de 600, se comienza por calcular el cociente 600/40 que nos dice que existen 40 grupos de 15 elementos entre los 600. Se elige un elemento de salida entre los 15 primeros, y suponiendo que sea el k-simo, el resto de los elementos serán los k-simos de cada grupo. En concreto, si el elemento de partida es el número 6, los restantes serán los que tengan los números: 15+6 ,2x15+6,......,39x15+6

Este procedimiento simplifica enormemente la elección de elementos, pero puede dar al traste con la representatividad de la muestra, cuando los elementos se hayan numerados por algún criterio concreto, y los k-simos tienen todos una determinada característica, que haga conformarse una muestra no representativa.
 
4.6 Estratificado

A veces nos interesa, cuando las poblaciones son muy grandes, dividir éstas en sub-poblaciones o estratos, sin elementos comunes, y que cubran toda la población.

Una vez hecho esto podemos elegir, por muestreo aleatorio simple, de cada estrato, un número de elementos igual o proporcional al tamaño del estrato.

Este procedimiento tiene la gran ventaja de que se puede obtener una mayor precisión en poblaciones no homogéneas (aunque en este curso no estudiaremos los métodos necesarios)

Si decidiéramos hacer una encuesta sobre la incidencia del tabaco en nuestro centro, podríamos razonar de la siguiente forma:

Nuestro centro tiene 2000 alumnos, 720 en 3º de ESO, 700 en 4º de ESO, 340 en 1º de Bachillerato, y 240 en 2º de Bachillerato.

Si deseamos tomar una muestra de 100 alumnos, para analizar la incidencia del tabaco en la adolescencia, bastaría tomar un número igual de alumnos de cada estrato, es decir 25.

Si embargo, si lo que se quiere es hacer una encuesta para conocer la opinión que tiene el alumnado sobre una medida que ha tomado el Consejo Escolar, es más representativo elegir de cada estrato, y en número proporcional a su tamaño, los elementos que compondrán la muestra. Si 3º de ESO representa al 36% del alumnado, el 36% de la muestra (es decir 36 alumnos) se elegirán de este estrato por muestreo aleatorio simple, 35 para 4º de ESO, y así hasta completar los 100 elementos de la muestra.
 
5. MUESTRA CON Y SIN REPOSICION

Si sacamos el número de una urna, podemos volverlos en ella o no, antes de la siguiente extracción. En el primer caso, ese número puede salir de nuevo mas veces, mientras que en el segundo pueda salir cada numero una vez.

Estos dos tipos de muestras se llaman, respectivamente, Muestras con reposición y muestra sin reposición

Las poblaciones son finitas o infinitas. Si por ejemplo, sacamos 10 bolas sucesivamente, sin reposición, de una urna que contiene 100 bolas, estamos tomando muestra de población finita; mientras que si lanzamos 50 veces una moneda contamos el numero de caras, estamos ante una muestra población infinita.

Una población finita en la que se efectúa muestra con reposición, puede considerarse infinita teóricamente, ya que puede tomar cualquier numero de muestras sin agotarla. Para muchos efectos prácticos, una población muy grande se puede considerar como si fuera infinita.
 
6. DISTRIBUCIONES DE PROBABILIDAD EN EL MUESTREO
 
También llamadas distribuciones muestrales de un estadígrafo cualquiera obtenido a través de la muestra. La idea es la siguiente: si se toman k muestras, todas las posibles de tamaño n (con o sin reemplazamiento) de una población de tamaño NP, y a cada muestra se le calcula un estadígrafo e (media, mediana, varianza, etc.), se obtienen una serie de k valores: e1, e2, e3 , ..., ek

Estos valores pueden agruparse mediante un histograma de frecuencias para poder apreciar la forma de la distribución de los mismos. En la Figura 10.1 se esquematiza esta situación: 
 
Figura 6.1 Distribuciones muestrales. 

Población

De una población cualquiera se extraen k muestras; cada una permite calcular k estadígrafos con los cuales se puede hacer un histograma como el de la derecha de la Figura 10.1. Se aprecia que este histograma adquiere forma de campana si se suavizan los escalones, al achicar los intervalos.

Esta curva obtenida a partir de datos muestrales, observados a través del muestreo, tiende asintóticamente a otra curva teórica a medida que k aumenta, y los intervalos se hacen infinitesimales.

Dicha curva teórica es la función de Gauss de acuerdo con el Teorema Central del Límite, el principal de la Estadística.

El Teorema Central del Límite permite establecer que, en condiciones muy generales, si la muestra es lo suficientemente grande, la distribución teórica de los k valores obtenidos es aproximadamente la función de Gauss. Esta es la base de la Teoría de las Grandes Muestras. Las principales Distribuciones Muestrales son funciones de Gauss identificadas en forma unívoca con sus dos parámetros μ y SE. En la Tabla 10.1 se presentan estos dos valores para cada uno de los estadígrafos más usuales. En la primer columna de la tabla se muestra cada estadígrafo, en la segunda columna se da la fórmula para el cálculo del error típico de estimación SE. Finalmente en la tercera columna se muestra la estimación puntual para obtener el valor esperado del estadígrafo μe, con las aclaraciones respecto al tamaño muestral requerido para que tal estimación sea considerada aceptable.
 
7. DISTRIBUCIÓN MUESTRAL DE LA MEDIA
 
Si el estadígrafo elegido es la media, se tendrán .X1 ,.X2 ,.X 3 ,...,.Xk medias muestrales; estas se distribuyen normalmente si k es muy grande. En la práctica, 30 o más valores son suficientes.

En la teoría, cuando k → ∞ entonces la distribución muestral de la media es asintóticamente normal y coincidirá con la función de Gauss. Esta distribución tendrá un valor esperado y una varianza que permitirán estimar los respectivos valores poblacionales. O sea,
μ x = μ σ2 x = σ 2 / n = SE2( x ) = VAR( x )

Tabla 7.1. Errores típicos para algunas distribuciones muestrales
Esto es: la media aritmética de las k medias muestrales obtenidas es aproximadamente igual a la media poblacional (o valor verdadero). Sin embargo, esta aproximación tiene un error de estimación denominado error típico o error estándar de estimación que en el caso de la media
es: σ x . En la bibliografía clínica la nomenclatura más empleada es SE( x ). En la Tabla 10.1 se muestran los valores anteriores para el caso de la media aritmética.

Las relaciones anteriores son válidas solo si la población es infinita, o si es finita, pero el muestreo es con reemplazamiento. Caso contrario, cuando la población es finita y se realizan muestreos sin reposición, entonces se deben ajustar dichas relaciones con:
 
μ x = μ σ2 x = (σ 2 / n) [( NP - n) / (NP - 1)] = SE2( x ) = VAR( x )
 
En el Cuadro 10.1 siguiente se presenta un problema de aplicación para un caso donde se conoce a toda la población, los parámetros poblacionales se calculan directamente aplicando las fórmulas vistas en el Tema 4 resultando: μ = 4,5 y σ 2 = 1,25. Se pueden verificar las relaciones anteriores de dos maneras. En la primera se toman las seis muestras posibles de tamaño 2, para un muestreo sin reemplazamiento. A cada muestra se le calcula su media respectiva, luego con estos 6 promedios se pueden calcular: el promedio y la varianza de esas seis muestras. Ahora, el promedio de todas las medias muestrales da exactamente igual al valor medio poblacional y la varianza de las medias muestrales verifica la relación anterior, si se aplica el factor de corrección para muestras de tamaño finito. La segunda manera (Bootstrap procedure) es tomando muestras con reposición, primero se toman todas las 16 muestras posibles con reemplazamiento de tamaño 2. Luego, con las dieciséis muestras se calculan las 16 medias respectivas. Por último, se calcula el promedio y la varianza de estos 16 valores, verificando de nuevo las relaciones vistas más arriba, para el caso de muestras con reposición. Para el otro problema, se suponen conocidos los valores poblacionales, y tomando 50 muestras de tamaño 3 hay que determinar la cantidad de casos donde el resultado esté comprendido en un intervalo (6 ; 7,796). La forma de proceder es calculando primero las probabilidades de obtener esos resultados límites, luego por diferencia calcular la probabilidad gaussiana asociada al intervalo y entonces, multiplicando dicha probabilidad por el tamaño muestral, se puede contestar la pregunta efectuada.

Nota: Es probable que en esta página web no aparezcan todos los elementos del presente documento.  Para tenerlo completo y en su formato original recomendamos descargarlo desde el menú en la parte superior

Dos Santos, Ma. Yolanda

yolanda_dossantosarrobayahoo.com

Comentarios
comments powered by Disqus

Nuevas publicaciones

⇐ Hazte Fan en Facebook
⇐ Síguenos en Twitter
⇐ Agréganos en Google +
⇐ Suscríbete vía Email
"Si tú tienes una manzana y yo tengo una manzana e intercambiamos las manzanas, entonces tanto tú como yo seguiremos teniendo una manzana. Pero si tú tienes una idea y yo tengo una idea e intercambiamos ideas, entonces ambos tendremos dos ideas"
George Bernard Shaw
Comparte conocimiento
Contenidos publicados con licencia CC BY-NC-SA 3.0 a excepción de los casos en los que se indican derechos de autor específicos. Sugerimos contactar a los autores al usar material públicamente.