Lógica matemática para la toma de decisiones

1
Las decisiones que tomamos en este momento, tendrán una consecuencia a
futuro, partiendo de esto, y moviéndonos al ámbito organizacional, esta mantiene
una relación muy estrecha con la capacidad de tomar decisiones ante situaciones
complejas y tienen que ver con el ejercicio empresarial de todas las organizaciones.
Estas decisiones, son muy importantes ya requieren habilidades y de
capacidades especiales por parte de los responsables de tomarlas, ya que se tiene
que hacer de manera rápida y efectiva, y sobre todo con seguridad de que se está
tomando la mejor decisión.
Durante la investigación de este tema, podremos observar la importancia de
los modelos matemáticos que sirven como base para los procesos de tomas de
decisiones complejas de las organizaciones.
Palabras claves:
- Lógica
- Matemáticas
- Tomas de decisiones
- Organizaciones
- Empresas
- Modelos matemáticos
LOGICA DE LA MODELACION MATEMATICA SIMPLE COMO
ELEMENTO BASE EN LA TOMA DE DECISIONES COMPLEJAS
2
LOGICA DE LA MODELACION MATEMATICA SIMPLE COMO
ELEMENTO BASE EN LA TOMA DE DECISIONES COMPLEJAS
Desarrollo del pensamiento lógico
De forma frecuente, se escucha decir que la lógica representa una base
fundamental para el desarrollo de las matemáticas ya que afirmamos que, a su vez,
las matemáticas permiten un desarrollo de la lógica de pensamiento o de un
pensamiento lógico, dependiendo del tipo de lógica del que se hable.
Si se plantea una lógica formal, como se conoce tradicionalmente, en donde
el cumplimiento de formas y reglas dan validez a conclusiones, caminos construidos
mediante matemáticas.
Por el lado contrario, si se considera una lógica que sustenta a las
matemáticas como un proceso de desarrollo de aprendizaje, es una lógica
dialéctica, en donde los conceptos parecen contrapuestos y contradictorios también.
(Peñalva, 2010)
Desarrollo del pensamiento lógico y la resolución de problemas
Algunas teorías y escuelas han tratado de explicar cómo es que funciona el
pensamiento lógico en la aplicación de solución de problemas, así es como se
encuentra la lógica cognitiva, de forma histórica ha provisto de ciertos resultados
útiles a estos propósitos, con dos enfoques básicos como: la teoría de un
pensamiento asociacionista el cual enfatiza un elemento de la cadena de resolución
y la teoría de la geltast, siendo aquella que se sustenta en un entendimiento
estructural de una situación específica a resolver.
3
Matemáticas, indispensable en las tomas de decisiones
El investigador conocido como Onésimo Hdez. Lerma, es el fundador de la
Teoría del Control Estocástico, en México; ha indicado que las matemáticas son
indispensables para el proceso de toma de decisiones en nuestro país.
Argumentó que gran parte de las decisiones económicas se basan en
pronósticos, en analizar datos estadísticos y la herramienta más utilizada para ellos
son las matemáticas.
En un congreso, del cual formó parte, dijo claramente que todo lo que nos
rodea prácticamente es matemático.
Esta teoría propuesta por el (Teoría del Control Estocástico) trata de un
proceso de toma de decisiones, que precisamente trata de controlar y crear
estrategias para poder influir en un determinado sistema.
Por control estocástico, se refiere a que trabaja con problemas probabilísticos
conocidos también como estocásticos o aleatorios. Sus principales áreas de
aplicación son: economía, ingeniería, finanzas, tecnología, control de poblaciones,
administración de recursos renovables y no renovables, entre otros.
(El Universal, 2013)
Decisiones basadas en modelos matemáticos: la aportación de la
investigación operativa
(González Martín, s.f.) Tomar decisiones no sólo en las empresas, es una de las
características más definitivas de lo que los seres humanos entendemos por aquello
llamado vida. De cierta manera, vivir es un sinónimo de poder decidir.
Un número sin duda importante de decisiones, tomadas por ciertas personas,
tiene un grado de trascendencia ya que no sólo afectan al entorno familiar o
4
individual, sino que tienen la capacidad de influir decisivamente en colectividades en
el medio ambiente, recursos naturales y disfruta la sociedad.
Muchas decisiones, en donde se ven involucrados distintas organizaciones e
individuos, adquieren índices adecuados de garantía cuando estos se apoyan en
una formación objetiva, que normalmente se expresan en datos cuantitativos.
Soporte cuantitativo a la decisión: los métodos
Paradigma monocriterio
En el planteamiento original de un problema de decisiones, su supone que las
preferencias del decisor se pueden representar matemáticamente mediante una
única función (función objetivo) la cual permite ordenar las decisiones posibles,
asignando a cada una, un cierto índice de deseabilidad, basándose en ciertas
hipótesis sobre racionalidad esperada por el decisor.
La programación matemática es el conjunto de técnicas con los que la
Matemática aborda el estudio general de los problemas de optimización en un
marco de decisiones monobjetivo, estático y de decisor único.
La Programación Lineal también ha demostrado tener una enorme variedad
de aplicaciones en economía y en las organizaciones, especialmente en la elección
de técnicas o factores de producción que permiten obtener un determinado nivel de
producción con un costo mínimo o un máximo beneficio. Junto con el análisis input-
output y la Teoría de Juegos, se poda considerar entre los antecedentes de la
llamada Economía Lineal.
La Teoría de Juegos o el análisis de los problemas de conflicto o los juegos
de estrategia, constituyen el soporte metodológico de problemas de decisiones con
más de un actor.
5
Los problemas de decisión en grupo, votaciones y elección social tienen esta
estructura. Se han utilizado en situaciones de mercado en las que el
comportamiento de cada participante dependerá de las acciones de todos los
demás.
Paradigma multicriterio
Es normal y de cierta manera habitual que el ser humano tome decisiones
sobre problemas de cierta complejidad que incluyen varios objetivos, que pueden
ser total o parcialmente conflictivos entre sí, de forma que la mejora en cualquiera
de estos podría empeorar el valor de los otros objetivos que son evaluados de
acuerdo a múltiples criterios y donde no es evidente la mejor o la óptima alternativa.
Son demasiados los problemas de naturaleza económica que se caracterizan
porque en la elección de la mejor decisión, se tienen que tomar en cuenta varios
criterios y, por lo tanto, se desea alcanzar más de un objetivo.
La programación multiobjetivo y la teoría de la decisión multicriterio, se
encargan de la resolución de problemas de este tipo y por lo tanto, existen muchos
trabajos en los que se aplica dicha teoría a problemas de naturaleza económica.
(Rodríguez-Uría, Bilbao Terol, Arenas Parra, & Pérez Gladish, s.f.)
6
Modelos matemáticos
En función a lo que ya se ha desarrollado se establece que cada problema
requiere de una solución propia ya sea a partir de uno o diferentes métodos
matemáticos.
No obstante es posible apreciar tendencias entre los métodos, los cuales
permiten dar un valor agregado según el problema que enfrenten. Algunos
modelos matemáticos más ocupados son:
Técnicas de modelos matemáticos
Existe una extensa cantidad de recursos de modelación matemática y cada
una de ellos están en base a lo que se quiere analizar.
Cada modelo tiene características propias y en base a esto, también tiene
factores específicos inmersos en el proceso.
Por lo que se pueden llegar a considerar cuatro niveles de toma de decisiones:
Estratégico
Programación
Planeación
Ejecución
Técnica de visualización
Consideran aquellos modelos basados gráficamente por medio de los
ordenadores, se priorizan en modelos de visualización. Así se diseñan de manera
correcta y ajustada a las necesidades para el proceso de toma de decisiones.
7
Optimización matemática
Comúnmente se basa en los algoritmos correspondientes a la programación
matemática. Cada uno de ellos, están diseñados para cumplir con los
requerimientos, mientras que los algebraicos o diferenciales pueden utilizar algún
otro tipo de programación en base a necesidades específicas.
Heurísticos
Utilizada para la optimización y cuando la estructura de los modelos no
resulta la apropiada, a pesar de sus restricciones, pueden ofrecer soluciones que
sean útiles cuando no se saben o conocen los algoritmos matemáticos.
Sistemas expertos
Estos sistemas, buscan montar un sistema existente sobre otro, basados en
el conocimiento avanzado del ser humano. Requieren de una gran inversión en
tiempo y dinero, ya que se necesita de capacitación.
Análisis y minerías de datos
El propósito de este es, obtener datos históricos para la creación de algunos
modelos que sustenten la toma de decisiones.
(López Ramos, 2015)
8
Uso de modelos matemáticos para la toma de decisiones
Los modelos matemáticos y el proceso de la toma de decisiones después de
todo no están tan distanciados el uno del otro ya que ambos reaccionan en
consecuencia a eventualidades de las organizaciones y empresas para evaluar su
desempeño.
Es muy importante que todas las organizaciones fomenten a partir del
proceso de toma de decisiones, sin importar el nivel de la organización, a las
personas que tienen una responsabilidad dentro de la compañía para el uso de la
modelación matemática permitiendo que tengan los resultados esperados.
La toma de decisiones, es por lo tanto un proceso que se debe incorporar
coma una función extra en los cargos directivos de una organización y además debe
realizarse con precaución para poder determinar las mejores u óptimas decisiones
que afectaran a toda la organización.
9
Conclusión
Las empresas, sin importar su giro o tamaño, tienen un factor en común que
llevar a cabo por parte de los directivos: tomar decisiones, y aunque parezca ser un
tema muy común e incluso habitual, si debe de tomarse con seriedad ya que es todo
un proceso que requiere de atención e inversión.
Una pequeña decisión puede marcar el rumbo de las organizaciones, es por
ello, que una herramienta efectiva para aplicarla en estos procesos son las
matemáticas a través de algunos campos específicos como la programación lineal o
la estadística.
De este modo, surge el estudio de la toma de decisiones a partir de la
implementación de los modelos matemáticos, los cuales proporcionan un panorama
cuantitativo de la situación actual y real de la empresa, en base a lo cual, los
gerentes tienen la opción de elegir o tomar la decisión que consideren más oportuna
u óptima.
10
Propuesta de tema de tesis
Implementación de un modelo de lógica matemática para mejorar el proceso de
toma de decisiones de una organización.
Objetivo General
Implementar un modelo de lógica matemática para mejorar el proceso de toma de
decisiones dentro de una organización de la región de Orizaba.
Agradecimientos
Al Tecnológico Nacional de México por ser mi alma máter y al Dr. Fernando Aguirre
y Hernández por su apoyo y motivación para realizar estos artículos en la materia de
Fundamentos de Ingeniería Administrativa.
11
Referencias
El Universal. (8 de Agosto de 2013). Recuperado el 2 de Mayo de 2016, de
http://archivo.eluniversal.com.mx/ciencia/2013/matematicas-indispensables-
toma-decisiones-79561.html
González Martín, C. (s.f.). Decisiones basadas en modelos matemáticos: la
aportación de la investigación operativa.
López Ramos, L. A. (12 de Noviembre de 2015). Gestiopolis. Recuperado el 2 de
Mayo de 2016, de http://www.gestiopolis.com/modelacion-matematica-simple-
para-la-toma-de-decisiones/
Peñalva, L. (Enero de 2010). Scielo.org. Recuperado el 2 de Mayo de 2016, de
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-
77422010000100008
Rodríguez-Uría, M. V., Bilbao Terol, A., Arenas Parra, M., & Pérez Gladish, B. (s.f.).
Las matemáticas como soporte de las decisiones en economía y empresa.
12.
0
LOGICA DE LA MODELACION MATEMATICA SIMPLE
COMO ELEMENTO BASE EN LA TOMA DE DECISIONES
COMPLEJAS
Fundamentos de Ingeniería Administrativa
Por: Sánchez Ávila María Fernanda
2016
Instituto Tecnológico Nacional de México
Maestría en Ingeniería Administrativa
Contenido
Introducción ................................................................................................................ 1
Desarrollo del pensamiento lógico .......................................................................... 2
Desarrollo del pensamiento lógico y la resolución de problemas ........................... 2
Matemáticas, indispensable en las tomas de decisiones ....................................... 3
Decisiones basadas en modelos matemáticos: la aportación de la investigación
operativa ................................................................................................................. 3
Soporte cuantitativo a la decisión: los métodos ...................................................... 4
Modelos matemáticos ............................................................................................. 6
Uso de modelos matemáticos para la toma de decisiones ..................................... 8
Conclusión ................................................................................................................. 9
Referencias .............................................................................................................. 11

Hazle saber al autor que aprecias su trabajo

Estás en libertad de marcarlo con "Me gusta" o no

Tu opinión vale, comenta aquíOculta los comentarios

Comentarios

comentarios

Compártelo con tu mundo

Cita esta página
Sánchez Ávila María Fernanda. (2016, mayo 6). Lógica matemática para la toma de decisiones. Recuperado de http://www.gestiopolis.com/logica-matematica-la-toma-decisiones/
Sánchez Ávila, María Fernanda. "Lógica matemática para la toma de decisiones". GestioPolis. 6 mayo 2016. Web. <http://www.gestiopolis.com/logica-matematica-la-toma-decisiones/>.
Sánchez Ávila, María Fernanda. "Lógica matemática para la toma de decisiones". GestioPolis. mayo 6, 2016. Consultado el 9 de Diciembre de 2016. http://www.gestiopolis.com/logica-matematica-la-toma-decisiones/.
Sánchez Ávila, María Fernanda. Lógica matemática para la toma de decisiones [en línea]. <http://www.gestiopolis.com/logica-matematica-la-toma-decisiones/> [Citado el 9 de Diciembre de 2016].
Copiar
Imagen del encabezado cortesía de cogdog en Flickr