Fuentes de financiación de la empresa: Préstamos bancarios

Autor: Frank Reynaldo Bergado Boitel

Instrumentos, inversiones, riesgo y financiamiento

13-12-2012

Introducción

En el contexto global de cualquier economía se encuentran unidades económicas con excesos y déficit temporales de recursos financieros. Las unidades económicas con excesos temporales presentan un flujo de caja positivo como resultado de que sus ingresos son superiores a sus egresos en el período; mientras en las unidades deficitarias, temporalmente, los ingresos corrientes, no cubren las necesidades de desembolsos en determinado lapso de tiempo. Ambas buscan el modo de equilibrar sus balances monetarios, rentabilizando sus excedentes o financiando su déficit con recursos ajenos.

Las empresas necesitan recursos para llevar a cabo sus estrategias operación, inversión y financiamiento, dichas estrategias permiten abrir más mercados en otros lugares geográficos, aumentar producciones, ampliar, construir o adquirir nuevas plantas, realizar alguna otra inversión que la empresa vea benéfica para sí misma o aprovechar alguna oportunidad que les brinde el entorno donde estás se desempeñan.

La búsqueda de formas de financiación puede dar como resultado una variedad importante de opciones diferentes. Así el promotor de un emprendimiento, puede estar pensando en utilizar su propio capital, en la financiación de una inversión, o puede asociarse con otras personas, empresas o recurrir a instituciones financieras, organismos internacionales de financiación, o al estado.

Todo empresario, todo administrador de negocios, más específicamente, todo ente económico, se podrá ver abocado en algún momento a conseguir los fondos necesarios para la operación del negocio, es decir, debe tomar decisiones de financiación.

Fuentes de financiación

El financiamiento es el abastecimiento y uso eficiente del dinero, líneas de crédito, préstamos, fondos de cualquier clase que se emplean en la realización de un proyecto o en el funcionamiento de una empresa.

La financiación consiste en la obtención de los medios económicos necesarios para hacer frente a los gastos de la empresa. Las fuentes de financiación son las vías que tiene una empresa a su disposición para captar fondos.

Por tanto: Financiar es el acto de dotar de dinero y de crédito a una empresa, organización o individuo, es decir, conseguir recursos y medios de pago para destinarlos a la adquisición de bienes y servicios, necesarios para el desarrollo de las correspondientes funciones.

Clasificación de las fuentes de financiación

Las fuentes de financiación de la empresa pueden clasificarse según el plazo de devolución, origen o procedencia de la financiación y exigibilidad o titularidad de los fondos obtenidos.

A.) Según el plazo de devolución

Las fuentes de financiación pueden clasificarse en función del tiempo que pase hasta que haya que devolver el capital prestado. Desde esta perspectiva cabe distinguir entre financiación a corto plazo y financiación a largo plazo.

  • Financiación a corto plazo: Es aquella cuyo vencimiento o el plazo de devolución es inferior a un año. Tales son los casos de los créditos de proveedores (pasivos espontáneos) y líneas de crédito bancario que pueda obtener la empresa para financiación del activos corrientes (pasivo no espontáneo).
  • Financiación a largo plazo: Es aquella cuyo vencimiento (el plazo de devolución) es superior a un año, o no existe obligación de devolución. Dentro de estos se pueden encontrar los pasivos no corrientes y las aportaciones de capital.

B.) Según el origen de la financiación

Según esta clasificación, las fuentes de financiación pueden dividirse en función de si los recursos se han generado en el interior de la empresa, o bien han surgido en el exterior de la misma aunque finalmente hayan llegado a esta. Según este criterio cabe distinguir entre financiación interna y financiación externa.

  • Financiación interna: Son aquellos fondos que la empresa produce a través de su actividad. A modo de ejemplo pudieran citarse: reservas, depreciaciones, utilidades retenidas, etc. (beneficios reinvertidos en la propia empresa).
  • Financiación externa: Se caracterizan porque proceden de inversores (acreedores o propietarios). Dentro de esta clasificación son muy comunes: financiación bancaria: créditos y préstamos, emisión de obligaciones, ampliaciones de capital, etc.

C.) Según la titularidad de lo fondo obtenidos

Las fuentes de financiación pueden clasificarse según si los medios de financiación pertenecen a los propietarios de la empresa o si pertenecen a personas o instituciones ajenas a la empresa.

  • Medios de financiación ajenos: Forman parte del pasivo exigible, porque en algún momento deben devolverse (tienen vencimiento). Son muy comunes: créditos, préstamos, emisión de obligaciones, etc.
  • Medios de financiación propia: También se denomina pasivo no exigible porque no tienen un vencimiento, no exigen devolución, salvo en caso de disolución de la empresa. En este grupo se puede citar: aportaciones de capital, en este caso se habla de financiación propia externa, las depreciaciones, reservas y provisiones, casos en que se habla de financiación propia interna.

Una clasificación de las distintas fuentes de financiación se resume en la siguiente figura:

Fuentes de financiación

Fuente: Elaboración propia.

Préstamos y créditos

Los préstamos y créditos bancarios a largo plazo constituyen una fuente de financiación ajena y externa. Aunque ambas fuentes provienen de instituciones financieras estas se diferencian en cuanto a su uso, importante por tanto, poder distinguir entre uno u otro.

El crédito bancario es la autorización que otorga el banco, mediante contrato a un cliente, de disponer, hasta un límite prefijado, de recursos financieros en un tiempo determinado, el cual podrá ser utilizado parcial o totalmente, es decir, la entidad irá realizando entregas parciales a petición del cliente. Se utiliza para necesidades de circulante y presenta gran operatividad. (Borrás, Riverón, Caraballo).

El préstamo bancario, es el financiamiento concedido por el banco, bajo condiciones contractuales, por un tiempo determinado, el cual es tomado, en su totalidad, por el demandante en el momento de su concesión. Se utiliza para cubrir necesidades financieras permanentes y requiere en cada caso la formalización de un contrato independiente. (Borrás, Riverón, Caraballo).

Diferencias entre los créditos y los préstamos

1. En el crédito, el banco, pone a disposición del cliente hasta una determinada cantidad de dinero; el préstamo es la entrega de esa cantidad.

2. Los créditos devengan intereses para el banco solamente por la cantidad consumida o dispuesta en cada momento, y una comisión, que actúa a modo de interés, pero de una tasa mucho menor, sobre la parte no dispuesta (diferencia entre el límite del crédito y la parte no dispuesta). Sin embargo el préstamo devenga intereses por la totalidad de la deuda pendiente (capital vivo), independiente de que sea utilizada o no por el prestatario. O sea, en el préstamo el banco cobra intereses desde el momento pactado, aún en el caso de que el prestatario no haya aplicado de inmediato el financiamiento otorgado para cubrir necesidades previstas.

3. En el crédito revolvente (que es el más usual) la parte dispuesta por el prestatario puede aumentar, mantenerse, o disminuir en el tiempo una y otra vez, ya que no exige reembolsos periódicos prefijados y se puede disponer del crédito las veces que se desee. En el préstamo, la deuda pendiente nunca aumenta, generalmente disminuye, pues precisa la entrega de cantidades periódicas preestablecidas. Salvedad el caso del préstamo americano, en el que no se amortiza la totalidad de la deuda hasta el vencimiento, ósea esta se mantiene constante.

4. El crédito se instrumenta a través de una cuenta corriente. Los préstamos, sin embargo, no tienen nada que ver con las cuentas corrientes, sólo relacionándose con ellas (o con las cuentas de ahorro) en el momento de la anotación del cargo periódico establecido en el contrato del préstamo. Generalmente, el financiamiento otorgado mediante el préstamo se acredita en una cuenta específica para ello, en la propia entidad bancaria que lo concede u en otra que indique el cliente.

Ahora bien, centremos básicamente en el Capital de Préstamo dado que su análisis constituye el objeto de interés del presente artículo.

El préstamo bancario es una manifestación donde la persona se compromete a devolver la cantidad solicitada en el tiempo o plazo definido según las condiciones establecidas para dicho préstamo, más los intereses devengados, seguros y costos asociados si los hubiera.

Un préstamo es la operación financiera en la que una entidad o persona (el prestamista) entrega otra (el prestatario) una cantidad fija de dinero al comienzo de la operación, con la condición de que el prestatario devuelva esa cantidad junto con los intereses pactados en un plazo determinado. La amortización (devolución) del préstamo normalmente se realiza mediante unas cuotas regulares (mensuales, trimestrales, semestrales, anuales) a lo largo de ese plazo. Por lo tanto, la operación tiene una vida determinada previamente. Los intereses se cobran sobre el total del dinero prestado.

Al analizar los préstamos hay que considerar básicamente cuatro elementos:

  • Importe del préstamo.
  • Tipo de interés
  • Plazo de Amortización
  • Importe de la cuota de amortización

Importe del préstamo

Valor, en términos monetarios, de la cantidad solicitada, o principal, tomada en calidad de préstamo, de la cual se hará uso por parte del prestatario.

Tipo de interés

La tasa de interés (o tipo de interés) es el porcentaje al que está invertido un capital en una unidad de tiempo, determinando lo que se refiere como "el precio del dinero en el mercado financiero". Otra definición no muy lejana al planteamiento anterior lo define como el precio que se paga por disponer de capital financiero durante un determinado período de tiempo (Porteiro, 2007), ósea es el precio que la entidad financiera le cobrará por prestarle el dinero que se solicita.

Plazo de Amortización

Plazo pactado o negociado para la devolución de la cantidad obtenida, en calidad de préstamo, más los interés devengados en el período transcurrido. El plazo puede estar dado en años: 1, 2, 3…n, semestres, meses.

La cuota de amortización

Es el proceso por el cual se cancela la obligación, ya sea efectuando un único pago o mediante una sucesión de pagos realizados en un plazo determinado.

Las cuotas que componen la serie de pagos pueden ser iguales entre sí, es decir, constantes o variables.

Denominamos cuotas a los a los pagos periódicos que realiza el prestatario en contraprestación por el capital tomado en préstamo. (Borrás, Riverón, Caraballo). Cada cuota que se abona se integra con dos componentes; una parte cubre el pago de los intereses sobre el saldo adeudado y la otra corresponde a la amortización del capital adeudado. (Porteiro, 2007).

Préstamos de capital

Fuente: Elaboración propia

Los términos amortizativos (según el método utilizado) pueden incluir tanto la cuota de amortización (reembolso del capital prestado, sin incluir interés) como la cuota de interés (cuantía de los intereses a desembolsar en un momento dado), o contener sólo una de ellas. (Borrás, Riverón, Caraballo).

Métodos de Cálculo

En la práctica internacional se utilizan diferentes métodos para la amortización de los préstamos bancarios o sea, para la devolución o reembolso de todo, o parte del principal tomado, y el pago de los intereses.

Básicamente se han desarrollado dos procedimientos para determinar el servicio de una deuda, que se identifican según esté compuesto por cuotas variables o iguales entre sí. En este material se desarrollan cuatro variantes, dos que toman en cuenta la igualdad entre sí de las cuotas, y otras dos basadas en la variabilidad de estas.

Método de cuota constante

Se trata de realizar la amortización del préstamo a través de cuotas constantes, idénticas para cada uno de los períodos de liquidación. El capital que se otorga al inicio del se va amortizando mediante cuotas de amortización crecientes, en base a una progresión geométrica. Las cuotas de interés por el contrario van decreciendo a medida que se avanza en la vida del préstamo. Sin embargo, la suma de la partes amortizante y de intereses tienen que ser igual a la cuota o término amortizativo.

Ejemplo: Suponga que usted es el director financiero de una empresa que está estudiando la posibilidad de invertir en una de sus instalaciones productivas. Un banco le oferta el 35% del total a invertir bajo las siguientes condiciones:

Importe del préstamo: $ 5000,00

Interés nominal con liquidación anual: 10%

Usted está considerando un plazo para la devolución del principal más intereses de 5 años, el cuadro para el servicio de la deuda, bajo el método de de amortización constante sería:

El primer paso consiste en determinar el importe de las cuotas, que son los componentes de una renta compuesta por cinco anualidades cuyo valor presente, a la tasa efectiva de interés anual del 10%, equivale al importe del préstamo a recibir.

De acuerdo con lo anterior, se puede plantear el cálculo del valor actual de las cinco cuotas de la siguiente manera:

V.A = C / (1+0,1) + C / (1+0,1)2 + C / (1+0,1)3 + C / (1+0,1)4 + C / (1+0,1)5

Conocido que el valor actual asciende a 5.000, es posible determinar el valor de la cuota de la siguiente manera:

5.000 = C * a 5 ┐0,10

De donde: C = 5.000 / a 5 ┐0,10

El importe de C se puede obtener en Tablas que registran el valor de a 5 ┐0,10, empleando calculadoras financieras o planillas electrónicas. El resultado que corresponde en este caso es:

C = 5.000 / 3,790787

C = 1.318,98

Determinada la cuota uniforme a pagar anualmente se calcula la parte destinada a la amortización del préstamo o, parte amortizante, y el interés que componen cada cuota. Para el primer período vencido se tiene:

I (0,1) = D0 * i = 5.000 * 0,1 = 500

La parte amortizante de la primera cuota quedaría:

C1 = A1 + I (0,1)

A 1 = C1 - I (0,1)

A 1 = 1.318,98 – 500 = 818,98

Por tanto el saldo adeudado luego del primer pago sería:

D1 = D0 - A1

D1 = 5.000 - 818,98 = 4181,02

Repitiendo el mismo procedimiento se pueden determinar la parte amortizante y el interés que componen las cuotas correspondientes a los siguientes años.

Con los resultados obtenidos se puede construir el siguiente cuadro.

Cuadro 1.

Cuadro de la deuda:

Años:

0

1

2

3

4

5

Préstamo Recibido

5.000,00

Saldo Adeudado

5.000,00

4.181,0

3.280,1

2.289,2

1.199,1

0,0

Servicio de la deuda:

Amortización

818,9

900,8

990,9

1.090,0

1.199,1

Interés

500

418

328

229

120

Cuota

1.318,98

1.318,98

1.318,98

1.318,98

1.318,98

Total Intereses

1.595

Total Amortización

5.000

Total de cuotas

6.595

Nota: el año ¨0¨corresponde al período donde se recibe el préstamo.

Observando el cuadro se puede apreciar que los intereses son decrecientes en la medida que la parte amortizante es creciente.

Es importe aclarar y el lector debe ser cuidadoso ya que la tasa de interés y el período de liquidación del mismo deben estar expresados en la misma unidad de tiempo, por lo que si la liquidación de los intereses hubiera sido semestral habría que expresar la tasa de interés para un semestre:

i = i nominal / m

Donde m representa la frecuencia de liquidación.

Siendo la liquidación semestral: i = 0,1 / 2 = 0,05

Método de cuotas constantes, variante Americana

Consiste en una operación de amortización en la que al final de cada período de liquidación se pagan exclusivamente los intereses devengados en el mismo, mientras que la amortización del principal se efectúa al vencimiento de la operación.

Siguiendo el ejemplo anterior:

Cuadro 2.

Cuadro de la deuda:

Años:

0

1

2

3

4

5

Préstamo Recibido

5.000,00

Saldo Adeudado

5.000,00

5.000,00

5.000,0

5.000,0

5.000,0

0,0

Servicio de la deuda:

Amortización

5.000,0

Interés

500

500

500

500

500

Cuota

500,00

500,00

500,00

500,00

5.500,00

Total Intereses

2.500

Total Amortización

5.000

Total de cuotas

7.500

Nótese que el término amortizativo, durante los cuatro primeros años del préstamo, coincide con las cuotas de intereses de cada uno de los períodos, ya que estas cuantías constituyen su único componente durante la mayor parte del plazo, siendo en el último año de vida del préstamo, donde la cuota incluye, además del interés correspondiente al saldo adeudado, la parte amortizativa que equivale al principal tomado en préstamo al inicio de la operación.

Método de amortización constante. (Términos amortizativos variables)

Aquí las cuotas o términos amortizativos son variables y lo que permanece constante a lo largo de la vida del préstamo es la parte amortizante, la cual se obtiene dividiendo el principal del préstamo entre la cantidad de períodos de liquidación. Los intereses de cada período se obtienen aplicando la tasa de interés al capital vivo en cada período. Así, a medida que las cuantía del capital vivo va disminuyendo las a cuotas de intereses y los términos amortizativos van disminuyendo.

Siguiendo con el mismo ejemplo se procede a ejemplificar el método.

Cuadro 3.

Cuadro de la deuda:

Años:

0

1

2

3

4

5

Préstamo Recibido

5.000,00

Saldo Adeudado

5.000,00

4.000

3.000

2.000

1.000

0,0

Servicio de la deuda:

Amortización

1.000

1.000

1.000

1.000

1.000

Interés

500

400

300

200

100

Cuota

1.500

1.400

1.300

1.200

1.100

Total Intereses

1.500

Total Amortización

5.000

Total cuotas

6.500

Nótese que la parte amortizadora del principal es constante a lo largo del período y se determina dividiendo el importe del préstamo entre el número de períodos determinados para la devolución del mismo.

Préstamo / Número de períodos

5000 / 5 = 1000.

Además de amortizar el principal se debe pagar el interés generado por el transcurso del tiempo. La partida a incluir en la primera cuota corresponde al interés devengado durante el primer año, de acuerdo con el siguiente cálculo:

Interés (0,1) = 5.000 * 0,1 = 500

Por tanto la cuota a pagar en el primer año sería:

C1 = A1 + I (0,1) = 1.000 + 500 = 1.500

Una vez abonada la primera cuota, el capital adeudado al momento 1 será igual al principal menos la amortización en ese período

Saldo adeudado = 5.000 – 1.000 = 4.000

El interés generado durante el segundo período se determina a partir del saldo adeudado al inicio de ese período así:

Interés (0,1; 2) = 4.000 * 0,1 = 400

Sucesivamente aplicando el mismo análisis de puede determinar el interés generado y las cuotas para los años tres, cuatro y cinco.

Tal como surge de la lectura del Cuadro 3, la aplicación de este método de parte amortizante constante tiene como consecuencia la existencia de cuotas decrecientes, en razón de que los intereses incluidos en cada pago van disminuyendo debido a que se determinan a partir del saldo adeudado.

Método de términos amortizativos variables en progresión geométrica

En este método las cuotas o términos amortizativos son variables en progresión geométrica. Cada término amortizativo se calcula en base a la anterior, incrementada en una razón. Los términos amortizativos se determinan como el producto de la razón prefijada de incremento por la cuota anterior.

Sin embargo, para poder extraer la sucesión geométrica debemos, con anterioridad, calcular el importe de la primera cuota en base a una fórmula que más adelante se hará conocer al lector.

Una vez realizados los cálculos para la obtención de las distintas cuotas a pagar a lo largo del período del préstamo, el resto del cuadro de amortización se obtiene de forma similar al método de cuota constante.

Debido a la progresividad de las cuotas, el esfuerzo de pago resulta progresivo para el prestatario por lo que su uso más frecuente es en operaciones a largo plazo y en inversiones para las que está prevista una recuperación creciente.

Las equivalencias que expresa este método son las siguientes:

A1 = x; A2 = x * R; A3 = x * R2 … An = x * Rn-1

Alternativamente se puede plantear de similar manera:

A1 =x; A2 = A1 * R; A3 = A2 * R … An= An-1 * R

Siendo:

x = Co * (1 + i – R) / 1- (1+ i)-n * Rn

Por otra parte:

I1 = i * Co; I2 = i * (Co - A1); I3 = i * (Co - A1 - A2) … In = i * Con-1

A1 = TA1 - I1 = x - I1

A2 = TA2 – I2

An = TAn - In

Donde:

x: primera cuota de amortización

R: razón de variación progresiva anual

Co: monto del préstamo

TA: término amortizativo

A: Amortización

I: interés

i: Tipo de interés

n: número de períodos

Retomando el ejemplo se procede a desarrollar el método

Cuadro 4.

Cuadro de la deuda:

Años:

0

1

2

3

4

5

Préstamo Recibido

5.000

Saldo Adeudado

5.000

4.317

3.495

2.515

1.358

0,0

Servicio de la deuda:

Amortización

683

822

980

1.157

1.358

Interés

500

432

349

252

136

Cuota

1.183

1.254

1.329

1.409

1.493

Total Intereses

1.668

Total Amortización

5.000

Total cuotas

5.175

x = 5000 (1 + 0,10 – 1,06) / 1 – (1 + 0,10)-5 * (1,06)5

x = 1183

En este ejemplo se usó el valor de 1,06 como razón de variación progresiva anual.

La primera cuota de amortización se determina como el resultado de la fórmula anteriormente planteada, en este caso la solución plantea un término amortizativo para el primer año de $ 1183. La cuota correspondiente al segundo período se puede determinar multiplicando la cuota del período anterior por la razón de variación progresiva y así sucesivamente para el resto de los años. Nótese que el valor de la cuota anual se incrementa progresivamente a razón de 1,06. El interés es decreciente ya que este se determina aplicando el tipo de interés del préstamo al capital vivo, mientras que los saldos de amortización son crecientes ya que estos deben cubrir la diferencia entre la cuota de amortización y el interés generado en el período, este procedimiento es similar al empleado para el método de cuota constante.

Período de Gracia

La concesión de préstamos a largo plazo para financiar inversiones incluye con frecuencia el otorgamiento de períodos de gracia.

El período de gracia es una condición por la cual se pospone el comienzo de aquella parte de la cuota que contiene la amortización del principal. Se suele pactar por plazos que toman en cuenta la capacidad de liquidez del prestatario.

La lógica del acuerdo descansa sobre el criterio de que la principal fuente para el repago de las deudas está constituida por los fondos derivados de la operación de la empresa, en caso de que el prestatario sea esta. Por lo tanto es muy razonable el poder alinear el servicio de la deuda con aquellos períodos donde las proyecciones financieras de la empresa le permitan identificar, a futuro, momentos que no contemplen limitaciones en cuanto a la obtención de aquellos recursos a fin de poder cumplir con lo previamente pactado en la concesión del préstamo.

Durante el transcurso del período de gracia se generan intereses, a consecuencia de los préstamos recibidos; esta situación ubica a los prestatarios en la posición de hacer frente a tales obligaciones. La práctica ha dado tratamiento a esta situación, por lo que el período de gracia distingue entre dos modalidades distintas, una, con pago de intereses, y otra, con capitalización de estos.

a-) Con pago de intereses.

Bajo este enfoque el prestatario abona al banco los intereses sobre el principal que tienen origen durante el período de gracia. Concluido ya, el plazo otorgado como gracia, comenzará el cómputo de lo pactado para el reembolso del préstamo más los intereses que irá generando el capital vivo hasta su cancelación final.

Retomando el ejemplo a través del cual se han venido desarrollando los métodos expuestos, se procede mostrar el caso. Para facilitar los cálculos se desarrolla el ejemplo mediante el método de amortización constante.

Cuadro 5.

Cuadro de la deuda:

Años:

0

1

2

3

4

5

Préstamo Recibido

5.000

Saldo Adeudado

5.000

5.000

3.750

2.500

1.250

0,00

Servicio de la deuda:

Amortización

0,00

1.250

1.250

1.250

1.250

Interés

500

500

375

250

125

Cuota

500

1.750

1.625

1.500

1.375

Total Intereses

1.750

Total Amortización

5.000

Total cuotas

6.750

Puede observarse que durante el primer año de vigencia del préstamo sólo se abona el interés generado, mientras que la amortización del capital recién comienza en el segundo período. En este caso solo se ha concebido un año de gracia. Nótese que los intereses del primer período son iguales a los del segundo, por lo que si por una parte se obtiene un período para el cual no habrá desembolsos destinados a cubrir la parte amortizativa de la cuota, por otra, el saldo de intereses totales a pagar se incrementa, y por consiguiente, el total de cuotas a pagar, en $ 250, respecto a la alternativa sin gracia. El total de amortización se mantiene constante ya que esta está destinada a la devolución total del principal.

b-) Con capitalización de intereses.

En ocasiones se establece que los intereses vencidos se capitalizan mientras dure el período de gracia, lo que indica que el prestatario no efectuara ningún desembolso relacionado al repago de la deuda en dicho lapso y que los intereses generados se agregan al principal formando un nuevo monto el cual devengará intereses a favor del banco, durante aquellos períodos en los que no se abone la totalidad del préstamo.

Cuadro 6.

Cuadro de la deuda:

Años:

0

1

2

3

4

5

Préstamo Recibido

5.000

Saldo Adeudado

5.000

5.500

4.125

2.750

1.375

0,00

Servicio de la deuda:

Amortización

0,00

1.375

1.375

1.375

1.375

Interés

0,00

550

412

275

137

Cuota

0,00

1.925

1.787

1.650

1.512

Total Intereses

1.375

Total Amortización

5.500

Total cuotas

6.875

Puede apreciarse que al concluir el primer período el capital adeudado es superior al importe inicial del préstamo, la diferencia está constituida por el interés del primer año, el cual se ha incorporado a la deuda original. A partir de ese momento las partes amortizantes se determinan para cancelar el préstamo incrementado en $ 500, a razón de $ 1375 por año, agregando el interés devengado sobre saldos, componiendo así, la cuota anual desembolsable.

Para ver la aplicación del período de gracia y sus variantes al resto de los métodos abordados, ver Anexo 1.

La elección de un método

Una vez analizada la operatoria de los principales métodos de amortización de préstamos surge la pregunta: ¿Qué método elegir?

Si comparamos los métodos desarrollados con anterioridad observaremos que en todos el total de la cantidad amortizada se corresponde con el principal recibido al inicio, por lo que el prestamista recupera el dinero prestado. Sin embargo, la cantidad de intereses varía según el método.

Total Intereses

Método:

Sin período

de gracia

Gracia con pago de interés

Gracia con capitalización

Cuota Constante

1.595

1.809

1.440

Método Americano

2.500

No procede

2.200

Amortización Constante

1.500

1.750

1.375

Progresión geométrica

1.668

1.853

1.489

Nota: En los casos donde exista gracia se determinó como período un año.

Vemos que en los métodos de amortización constante y cuota constante se pagan menos intereses, siendo significativamente superior en el método americano y de términos variables en progresión geométrica.

Si tomando en consideración para el análisis, la incorporación del período de gracia, observemos, que en la variante con capitalización, vuelven a ser los métodos de amortización y cuotas constantes, donde menos intereses se pagan, incluso en comparación con la alternativa donde no se reconoce la existencia de períodos de gracia. Por lo que una solución pudiera ser aceptar el período de gracia con capitalización de intereses, calculados bajo estos métodos, tomando como único criterio de decisión el monto de intereses a pagar.

Alternativamente pudiéramos agregar que: el total a amortizar también varía en relación si el prestamista concede, o no, períodos de gracia al prestatario.

Total Amortizado

Método:

Sin período

de gracia

Gracia con pago de interés

Gracia con capitalización

Cuota Constante

5.000

5.000

5.500

Método Americano

5.000

---

5.500

Amortización Constante

5.000

5.000

5.500

Progresión geométrica

5.000

5.000

5.500

Observemos que en las situaciones en las que se toma en cuenta períodos de gracia y se acepta la variante donde se exonera al prestatario de amortizar el principal y del pago de los intereses, la cantidad a amortizar al final de la operación no coincide con el préstamo al inicio, esta se encuentra incrementada por el efecto de la capitalización de los intereses. En esta situación no convendría tomar la opción de aceptar el período de gracia con capitalización de intereses si solo tomáramos en cuenta el criterio del total a amortizar.

Por tanto el total de las cuotas a pagar al final del período dependerá del método de amortización que se emplee y del otorgamiento, o no, por parte del prestatario, de períodos de gracia en cualquiera de sus dos variantes descritas con anterioridad en este documento.

Total Cuotas

Método:

Sin período

de gracia

Gracia con pago de interés

Gracia con capitalización

Cuota Constante

6.595

6.809

6.940

Método Americano

7.500

---

7.700

Amortización Constante

6.500

6.750

6.875

Progresión geométrica

6.668

6.853

6.989

Un análisis de la tabla anterior nos permitiría identificar que empleando como método de amortización, aquellos de amortización y cuota constante, sin la existencia de períodos de gracia, los términos amortizativos totales a pagar son sustanciosamente inferiores a los obtenidos bajo el empleo del los métodos americano y de cuotas variables en progresión geométrica. Por lo que atendiendo al criterio del monto a amortizar y el total de intereses a abonar, estas pudieran ser las mejores soluciones.

Pero de esta evidencia no debemos sacar conclusiones precipitadas. El hecho de que un método ofrezca una mayor o menor suma a pagar no debe ser el criterio a considerar para su elección, tanto para el prestamista como para el prestatario, debido a que no se toma en cuenta el momento en estos pagos se producen. Desde el punto de vista financiero, los capitales no tienen igual valor dependiendo del momento en que se sitúen. Basándonos en los principios del valor del dinero en el tiempo, para comparar los diferentes métodos, debemos actualizar aquellos flujos que se obtienen en cada uno de ellos.

El Valor Actual Neto (VAN), una técnica valiosa

El VAN es un criterio de selección de inversiones basado en la diferencia entre el valor actual de los flujos futuros que ofrecerá una inversión y los desembolsos requeridos para su ejecución. Dicho de otra forma, se sitúan en el presente todas las entradas y salidas de de efectivo que habrá de generar una inversión a través de su vida económicamente útil y se comparan.

Para una mejor interpretación del concepto que expresa este indicador, resulta conveniente razonar sobre un caso simple pero realista. Se trata de imaginar una situación en la cual la inversión inicial del proyecto se materializa en un único período, al que se le identifica como "Año 0". En consecuencia, el flujo de caja del primer período (FC0) se reduce al desembolso para la inversión asociada a la implementación de esta. De este modo, se tiene: FC0 = I0

Los flujos netos de caja correspondientes a los "Años 1 a n", son los ingresos menos los egresos anuales de efectivo asociados al funcionamiento de la inversión. El valor actualizado de la corriente total de ingresos netos se define como la suma de los valores actuales de los flujos anuales previstos, descontados a la tasa de rentabilidad mínima exigida . Se expresa:

Fórmula

Siendo:

FCD: Suma total de Flujos de Caja Descontados

I: Tasa de actualización o de rentabilidad mínima requerida

FCj: Ingreso neto de caja correspondiente al año "j"

1 a n: Serie de años que componen la vida útil de la inversión

El Valor Actual Neto (VAN) de un proyecto se define como:

VAN (i) = FCD – I0

Criterios de selección

Al examinar el largo plazo, se puede advertir que toda inversión de un proyecto es financiada, en útimo término, con fondo propios. Una parte de estos son aportados al inicio, al integrarse el capital inicial (fondos propios más fondos ajenos); el resto se ira incorporando, paulatinamente, en la medida que el autofinanciamiento generado por el proyecto sustituya a los acreedores mediante la amortización de los préstamos recibidos.

Desde la óptica del inversor, la obtención del financiamiento constituye un diferimiento o aplazamiento de su propio esfuerzo financiero, bajar los costos del proyecto para este y beneficiarse del efecto positivo del apalancamiento al percibir el excedente que proviene de la diferencia entre el retorno que generan los activos y el costo de la deuda para el financiamiento inicial de estos.

La propuesta que a continuación desarrollaremos, cuya aplicación constituye un criterio más, a tener en cuenta, para la selección de financiamiento, está adaptada a partir de lo propuesto por el especialista uruguayo Julio César Porteiro en su libro ¨ Evaluación de Proyectos de Inversión. Perspectiva Empresarial ¨.

El método propuesto se articula en las siguientes etapas:

  • Proyectar bajo el enfoque de los accionistas , las corrientes de dinero que cada opción de capitalización generará durante su período de vigencia; dada esta perspectiva, los aportes del / los propietario / s se registran con signo negativo, los pagos del servicio de las deudas llevan signo negativo. No debe omitirse registrar, con signo positivo, del beneficio fiscal que genera el pago de intereses, por tratarse de un gasto deducible para el pago del impuesto sobre utilidades.
  • Calcular el Valor Actual Neto del flujo residual proyectado para los accionistas, utilizando como tasa de descuento el costo de oportunidad de los fondos propios.
  • Seleccionar, discriminando, entre las distintas opciones que son mutuamente excluyentes, la que prometa el menor VAN expresado en términos absolutos, pues se trata de corrientes financieras que expresan costos.

Retomando el ejemplo para el cual se ha venido desarrollando cada uno de los métodos de amortización de préstamos.

Suponga que usted es el director financiero de una empresa que está estudiando la posibilidad de invertir en una de sus instalaciones productivas. Un banco le oferta el 35% del total a invertir bajo las siguientes condiciones:

Importe del préstamo: $ 5000,00

Interés nominal con liquidación anual: 10%

Usted está considerando un plazo para la devolución del principal más intereses de 5 años.

La tasa de costo de oportunidad para los propietarios es del 11% y el impuesto sobre utilidades del 35%.

A modo de ejemplo se tomó el perfil financiero que arrojan los flujos para el inversionista empleando como método: amortización constante. Para ver el perfil financiero determinado mediante el uso del resto de los métodos: Ver anexo: 2.

Años:

0

1

2

3

4

5

Aporte en la Inversión Inicial

-9.286

Pagos por servicio de la deuda

-1.500

-1.400

-1.300

-1.200

-1.100

Efecto fiscal de los intereses

175

140

105

70

35

Flujo de fondos para los inversionistas

-9.286

-1.325

-1.260

-1.195

-1.130

-1.065

VAN (11%)

-13.753

Una vez formulados el perfil financiero y calculado en VAN para cada una de las alternativas, se procede a su representación mediante tabla para su cotejo.

Valores absolutos del VAN (11%)

Método:

Sin período

de gracia

Gracia con pago de interés

Gracia con capitalización

Cuota Contante

-13.723

-13.652

-13.767

Método Americano

-13.454

---

-13.549

Amortización Constante

-13.753

-13.670

-13.786

Progresión geométrica

-13.700

-13.639

-13.752

El cotejo entre las alternativas conduce a la elección del financiamiento bancario empleando como método de amortización él Americano sin el otorgamiento de períodos de gracia. Este criterio se fundamenta a razón de su menor costo; en efecto, desde la óptica de los inversionistas el método genera un costo actualizado que es inferior en $ 95 a la variante del mismo método esta vez con otorgamiento de gracia y capitalización de intereses.

Nótese que cuando comparábamos las diferentes alternativas tomando en consideración el saldo de intereses a pagar y el total de cuotas, este era, aparentemente, el menos conveniente.

Las razones que explican esta ventaja están fundamentadas en que los factores de actualización castigan con mayor rigurosidad a aquellos flujos financieros que se encuentran más alejados del presente. El principal desembolso asociados al repago de la deuda, bajo este método, tiene lugar precisamente en el último año de la operación.

Conclusiones

La búsqueda de financiamiento puede dar como resultado una amplia gama de alternativas, así el promotor de un emprendimiento, debe elegir entre una o varias opciones. Este puede optar desde, aportar su propio capital, emplear fondos de terceros, apelar al autofinanciamiento generado por la empresa, hasta, emplear una mezcla de todos. Por tanto el acto de dotar de dinero, a una empresa u organización puede clasificarse básicamente por su vencimiento, su procedencia y propiedad.

Las instituciones financieras, en la práctica, constituyen una de las alternativas a las que con mayor frecuencia se recurre en la búsqueda de fondos. Los créditos y préstamos ocupan un lugar relevante a través de los cuales los demandantes de recursos logran establecer contacto con los activos financieros deseados. La diferencia entre estas dos variantes de financiamiento se manifiesta a partir de que el crédito bancario dispone de un límite prefijado de recursos financieros, en un tiempo determinado, el cual podrá ser usado total o parcialmente, generalmente para cubrir necesidades de circulante. Los préstamos son concedidos bajo condiciones contractuales, el cual es tomado en su totalidad y requiere en cada caso la formalización de un contrato independiente. Su empleo se destina a cubrir necesidades financieras a largo plazo.

Al analizar los préstamos hay que considerar básicamente cuatro elementos: el importe del préstamo, tipo de interés, plazo de repago de la obligación e importe da cada cuota de amortización. La modalidad de su cálculo permite identificar entre dos procedimientos para determinar el servicio de la deuda; se caracterizan según esté compuesto por: términos amortizativos constantes o variables. Dentro de los primeros clasifican: método de cuotas constantes y americano, los segundos: de amortización constante y términos amortizativos variables en progresión geométrica.

Las negociaciones de préstamos incluyen además de los elementos antes mencionados, el otorgamiento, o no, al prestatario, de períodos de gracia, definidos como: plazos para los cuales se exonera a este, en una primera variante, y mientras dure la gracia, de solo abonar intereses. Una segunda situación reconoce que el prestatario no abonara, en dicho período, la cuota correspondiente, aceptando que los intereses devengados se capitalizarán incrementando el monto del préstamo.

Para la elección del método no existe un único criterio que sea válido. La capacidad de generación de recursos, interpretada a partir de la proyección de flujos de la empresa, en ocasiones, habrá de condicionar soluciones, que en algunos casos, no responden a la mejor elección según criterio de las más refinadas técnicas de selección de financiamiento.

No obstante, debe tenerse conciencia de una realidad: según las condiciones del negocio, para el prestamista o el prestatario, se hace conveniente o no acelerar el tiempo de recuperación o amortización del préstamo.

La empresa pudiera reflexionar acerca de si pide dinero prestado y el rendimiento de su inversión no es mayor que el costo del préstamo, es conveniente amortizar cuanto antes; si la rentabilidad de la inversión es muy superior al costo del financiamiento, sería deseable disfrutar de él el mayor tiempo posible.

Es necesario subrayar otra idea de suma importancia, para la elección del método de amortización es imprescindible adecuar el cuadro de amortización al presupuesto de efectivo proyectado de la empresa. Esta condición facilita las operaciones de la misma ya que el financiamiento y su amortización se adecúan a sus necesidades y garantiza la recuperación por la entidad bancaria.

Bibliografía

  • Borrás F. y otros “Banca y seguros: una aproximación al mundo empresarial”. Alicante, 1998.
  • Fabozzi F y Modiglianni F. “Mercados e Instituciones Financieras” Ed. Prentice Hall, España, México.
  • Fischer Stanley y otros Economía. Mc Graw Hill, EE.UU., 1989.
  • Sapag Chain Nassir y Reynaldo. Preparación y Evaluación de Proyectos. Mc Graw – Hill Interamericana de México, 1989.
  • Porteiro Julio César. Evaluación de Proyectos de Inversión. Perspectiva Empresarial. Fundación de Cultura Universitaria, Uruguay, 2007

Metodologías Consultadas

  • Metodología del Ministerio de Economía y Planificación (Cuba), para la formulación y evaluación de Proyectos Industriales.
  • Metodología del Banco Central de Cuba para la Evaluación de Inversiones.

Sitios Web visitados

Descargar Original

Descargar Original

Frank Reynaldo Bergado Boitel - frank@CONAS.co.cu

Graduado de Licenciatura en Contabilidad y Finanzas, desde el año 2009, en la Universidad Camilo Cienfuegos, Matanzas, Cuba. Ha participado en diferentes cursos de post grado, dentro de los cuales destacar: Formulación de Proyectos de Inversión y Evaluación de Proyectos de Inversión, ambos impartidos por el destacado profesor e investigador uruguayo Julio César Porteiro Doval. Actualmente consultor de "Consultores Asociados S.A.", CONAS por sus siglas, UEB, Matanzas, Cuba.

Comentarios
comments powered by Disqus

Nuevas publicaciones

⇐ Hazte Fan en Facebook
⇐ Síguenos en Twitter
⇐ Agréganos en Google +
⇐ Suscríbete vía Email
"Si tú tienes una manzana y yo tengo una manzana e intercambiamos las manzanas, entonces tanto tú como yo seguiremos teniendo una manzana. Pero si tú tienes una idea y yo tengo una idea e intercambiamos ideas, entonces ambos tendremos dos ideas"
George Bernard Shaw
Comparte conocimiento
Contenidos publicados con licencia CC BY-NC-SA 3.0 a excepción de los casos en los que se indican derechos de autor específicos. Sugerimos contactar a los autores al usar material públicamente.